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A B S T R A C T

Automated lesion detection in retinal optical coherence tomography (OCT) scans has shown promise for
several clinical applications, including diagnosis, monitoring and guidance of treatment decisions. However,
segmentation models still struggle to achieve the desired results for some complex lesions or datasets that
commonly occur in real-world, e.g. due to variability of lesion phenotypes, image quality or disease appearance.
While several techniques have been proposed to improve them, one line of research that has not yet been
investigated is the incorporation of additional semantic context through the application of anomaly detection
models. In this study we experimentally show that incorporating weak anomaly labels to standard segmentation
models consistently improves lesion segmentation results. This can be done relatively easy by detecting
anomalies with a separate model and then adding these output masks as an extra class for training the
segmentation model. This provides additional semantic context without requiring extra manual labels. We
empirically validated this strategy using two in-house and two publicly available retinal OCT datasets for
multiple lesion targets, demonstrating the potential of this generic anomaly guided segmentation approach to
be used as an extra tool for improving lesion detection models.
1. Introduction

Optical Coherence Tomography (OCT) scans constitute a gold stan-
dard imaging technique in ophthalmology, providing a high-resolution
3D visualization of the retina. It is non-invasive, acquires images in only
a few seconds and is therefore one of the most important diagnostic
modalities in the context of retinal diseases. 2D cross-sectional slices
(also known as B-scans) of 3D OCT volumes are typically qualitatively
evaluated by physicians to conduct diagnosis, determine treatments or
to infer other clinical decisions (Fujimoto and Swanson, 2016).

Age-related macular degeneration (AMD) is the most common cause
of legal blindness in people over age 65 in developed countries (Wong
et al., 2014). Its prevalence is steadily increasing due to the aging pop-
ulation, with 288 million people expected to be affected in 2040 (Wong
et al., 2014). AMD is a multifactorial disease, leading to several patho-
logical changes in the eye that can be visually assessed through OCT.
These include intraretinal cystoid fluid (IRC), subretinal fluid (SRF),
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pigment epithelial detachment (PED), drusen, pseudodrusen or sub-
retinal drusenoid deposits (SDD), geographic atrophy, subretinal hy-
perreflective material (SHRM) or hyperreflective foci (HRF) (Schmidt-
Erfurth et al., 2017; Liefers et al., 2021; Cao et al., 2021) (Fig. 1,
Fig. 3, Fig. 4, Fig. 5). Ophthalmologists usually base their treatment
decision on the qualitative assessment of these features at multiple
follow-up visits-a task that is prone to subjectivity, errors and bi-
ases (Michl et al., 2022). Segmenting all the lesions in a given image
might help in defining disease stages more accurately and objectively.
However, when done manually, this task is extremely tedious, time
consuming and therefore unfeasible in clinical practice. Automated
methods, on the other hand, can alleviate this task and allow de-
cisions that are less subjective, more reproducible and individually
optimized (Bogunović et al., 2019; Müller et al., 2021; Michl et al.,
2022). Accurate automated segmentations might enable large-scale
analyses for the discovery of biomarkers, as well as the investigation
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Fig. 1. Anomaly guided segmentation in retinal OCT. (a) Cross-sectional OCT scan, (b)
manual annotation of intraretinal cystoid fluid (IRC), (c) prediction of the baseline and
(d) segmentation output of the proposed ANGUS-Net approach.

of disease dynamics, individualized risks or new standardized and
objective treatment criteria (Schmidt-Erfurth et al., 2021). This might
further help in understanding the pathogenesis of complex diseases
such as AMD (Schmidt-Erfurth and Waldstein, 2016).

Current existing models for automated lesion segmentation in OCT
are mostly based on fully convolutional neural networks, which have
shown excellent performances in several image related applications
(Litjens et al., 2017). For some complex lesions or real-world datasets,
however, existing models are still struggling to get equally good results,
e.g. due to the high variability in disease appearance, lesion phenotypes
or image quality (Bogunović et al., 2019). Therefore, multiple tech-
niques have been investigated to further improve lesion segmentation
performance (Section 1.1).

In this paper, we propose a novel anomaly guided approach for
lesion segmentation in retinal (OCT) scans. Anomaly detection is used
to provide additional semantic context for the algorithms. In particular,
applying an anomaly detection model to the training dataset results
in weak anomaly segmentation maps of these images. Subsequently,
the manual annotations of the target of interest are merged with these
weak predictions, yielding a combined target map. The segmentation
model is then trained on this merged map to simultaneously segment
the target lesion as well as the anomalous area as an additional target
(Fig. 1). Here, we define anomaly detection as the task of capturing
deviations from a normal appearance, using only a set of healthy
patients without manual labels for training. This idea is appealing for
multiple reasons. First, it not only adds meaningful weak supervision
to the segmentation model, but also mimics the way physicians analyze
medical images: they first screen the image to identify deviations from
the normal morphology (i.e. anomalies), and subsequently analyze
these regions more closely. Second, as the training of the anomaly
detection model does not require manual annotations, this extra weak
supervision provides semantic context without additional labeling cost.
Third, since the training is independent of disease specific assumptions
and only involves healthy samples, its applicability is by definition not
limited to a specific lesion type or patient cohort.

1.1. Related work

Current approaches for automated lesion segmentation in retinal
OCT images primarily follow a U-net based encoder–decoder architec-
ture that must be trained with large-scale pixel-wise annotated datasets
to achieve good results (Ronneberger et al., 2015; Roy et al., 2017;
Schlegl et al., 2018; De Fauw et al., 2018; Bogunović et al., 2019;
Pekala et al., 2019; Lu et al., 2019; Liefers et al., 2021). The majority
of these models operate in 2D using B-scans as inputs (Roy et al.,
2017; Bogunović et al., 2019; Gu et al., 2019; Pekala et al., 2019; Lu
et al., 2019), with some exceptions that make use of three-dimensional
information by working on volume data from multiple cross-sectional
scans (De Fauw et al., 2018; Liefers et al., 2021). While 3D data
2

allows the networks to take more spatial context into account, it also
restricts the models to be applied only to images coherent with the
imaging acquisition protocol used in the training data (that is, with a
specific anatomical inter-slice distance and a fixed number of B-scans).
Additionally, retinal OCT segmentation methods seem to be mainly
focused towards retinal layers (Apostolopoulos et al., 2017; Pekala
et al., 2019; Orlando et al., 2019; Gu et al., 2019; He et al., 2021b)
or fluid segmentation (Roy et al., 2017; Schlegl et al., 2018; Lu et al.,
2019; Bogunović et al., 2019; Ye et al., 2021; Xing et al., 2022; He
et al., 2022).

Multiple efforts have been made to improve the performance of seg-
mentation models. These efforts are mostly focusing on enlarging their
receptive field (Apostolopoulos et al., 2017; Gu et al., 2019), combining
information of multiple scales (Ding et al., 2021; Meng et al., 2021;
Xing et al., 2022), applying attention mechanisms (Schlemper et al.,
2019; Sinha and Dolz, 2020; Ye et al., 2021), utilizing transformer-
based architectures (Chen et al., 2021; Zhang et al., 2021a; Cao et al.,
2022), post-processing segmentation prediction outputs (Bai et al.,
2017; Lu et al., 2019; Pekala et al., 2019), exploiting uncertainty esti-
mations (Orlando et al., 2019; Nair et al., 2020), introducing boundary
information about the targets (Karimi and Salcudean, 2019; Kervadec
et al., 2019; He et al., 2021a; Xing et al., 2022), leveraging multi-
task settings (Chen et al., 2018; Playout et al., 2019; He et al., 2020,
2021a; Zhang et al., 2021b), and incorporating either auto-context
approaches (Montuoro et al., 2017; Venhuizen et al., 2018; Zhou et al.,
2019) or prior information about the target shape (He et al., 2021b;
Xing et al., 2022). Examples of methods belonging to each of these
categories are briefly covered in the sequel.

Apostolopoulos et al. (2017) and Gu et al. (2019) introduced dilated
convolutional layers in the encoder–decoder structure to enlarge the
receptive field of the model and therefore provide additional context
to the network. Similarly, multi-scale approaches help to combine
both local and non-local segmentation information to better cope with
variations of lesion size. Meng et al. (2021), for instance, introduce
a multi-scale module for choroidal neovascularization (CNV) lesion
segmentation in OCT scans. While these approaches indeed extend
the number of potential pixels that the model takes into account for
prediction, it does not explicitly incorporate semantic context. Spatial
pyramid pooling modules are combined with attention mechanisms
in Xing et al. (2022) to improve segmentation of pathological reti-
nal fluid. The objective of attention modules is to learn potentially
irrelevant areas of an input image and put the focus of the model on
the relevant features for a specific task. Segmentation networks typ-
ically use higher-level features to guide the self-attention mechanism
of the actual feature map (Schlemper et al., 2019; Sinha and Dolz,
2020). Conceptually, attention mechanisms are therefore related to
multi-scale approaches in the sense that both aim at improving perfor-
mance by fusing information from different scales. Related to attention,
transformer-based architectures for segmentation have been recently
proposed (Chen et al., 2021; Zhang et al., 2021a; Cao et al., 2022). For
instance, both ‘TransUNet’ (Chen et al., 2021) and ’Swin-Unet’ (Cao
et al., 2022) are hybrid architectures combining transformers and
U-Net, aiming to combine the extraction of global context with high-
resolution convolutional feature maps to enable precise localization.
Instead, post-processing techniques directly work on the output of the
network and seek to improve the results by applying heuristics or
assumptions with respect to the masks themselves. Examples for this
are the application of conditional random fields that make use of the
spatial correlation of neighboring pixels (as in Bai et al. (2017)); the
Gaussian processes regression technique used in Pekala et al. (2019) for
segmentation of retinal layers; or the usage of hand-crafted features in
combination with random forests in Lu et al. (2019) to reduce the num-
ber of false positive fluid pixels. Estimating the pixel-wise uncertainty
for segmentation masks has also shown to improve results. Orlando
et al. (2019) utilized the Monte-Carlo dropout technique to estimate

the epistemic uncertainty of the neural network for photoreceptor layer



Medical Image Analysis 93 (2024) 103104P. Seeböck et al.

a
t
t
f

i
b
s

d
i

𝑦

w
c
1
s

1

w
a
c
o
a
a
s
m
t

𝐿

segmentation, while Nair et al. (2020) applied the same technique for
multiple sclerosis lesion segmentation on a 3D U-Net. Other approaches
seek to improve the performance by focusing on the boundary region of
the segmentation target of interest. This can be done by introducing an
explicit boundary loss, optimizing a distance metric between ground
truth and predicted shape instead of solely relying on region based
losses (Karimi and Salcudean, 2019; Kervadec et al., 2019; He et al.,
2021a; Xing et al., 2022). Besides representing the target itself in a dif-
ferent way to the network, additional supervision from another task can
help the generalization performance of the model, as has been shown
for skin lesion segmentation (Chen et al., 2018), segmentation of lesions
in color fundus images (Playout et al., 2019) or organ segmentation
in CT scans (He et al., 2020). The underlying idea is that the features
learned for one task can benefit the learning of others, e.g. predicting
the overall disease class of an image helps the segmentation of particu-
lar lesions. Even though this multi-task learning setting can be helpful,
it is not clear which tasks are positively correlated and which tasks,
when trained together, negatively impact the performance (Fifty et al.,
2021). Another set of methods utilize auto-context where a sequence of
models is applied, taking the output of the previous stage as additional
input to enable a step-by-step refinement of predicted segmentation
maps. This strategy has been utilized in OCT for retinal layer and
fluid segmentation (Montuoro et al., 2017; Venhuizen et al., 2018)
or natural images (Zhou et al., 2019). This strategy can be seen as
providing additional context to a later stage in the sequence, with the
context being restricted to the classes which are available in the ground
truth annotations. Prior knowledge about the anatomy or specific shape
characteristics of lesions can also be encoded as topological constraints
into the network. He et al. (2021b) introduce a topology preserving
module to ensure an anatomical correct ordering of predicted retinal
layers. A diffeomorphic framework is utilized in Wyburd et al. (2021)
to ensure preserved topology in myocardium segmentation, by learning
to properly warp a binary prior map. However, incorporating prior
knowledge is well applicable for regular, relatively well-defined shapes,
but cannot be easily extended to segmentation of lesions exhibiting
a large variation in shape, location, size or number of connected
components.

In contrast, a direction of research that has not yet been explored
regarding performance improvement of (lesion) segmentation, is the
usage of anomaly detection methods to provide additional seman-
tic context. Several powerful approaches for anomaly detection have
already been proposed for retinal OCT scans that can be directly uti-
lized, including methods based on shape models (Dufour et al., 2012),
Gaussian Mixture Models (GMMs) (Sidibé et al., 2017), auto-encoders
combined with one-class support vector machines (SVMs) (Seeböck
et al., 2019b), generative adversarial networks (GANs) (Schlegl et al.,
2017, 2019; Zhou et al., 2020), CycleGANs (Wang et al., 2021), normal-
izing flows (Zhao et al., 2022) or Bayesian deep learning with epistemic
uncertainty estimates (Seeböck et al., 2019a). In general, unsupervised
anomaly detection is an active growing field of research, proposing
methods for varying medical imaging domains beyond OCT such as
brain imaging (Sato et al., 2018; Pawlowski et al., 2018; Wyatt et al.,
2022; Bercea et al., 2023), chest radiographs (Wolleb et al., 2020;
Zhang et al., 2020; Nakao et al., 2021), fundus photography (Ouardini
et al., 2019) or breast imaging (Quellec et al., 2016; Wei et al.,
2018; Burger et al., 2023). In this work we use the anomaly detection
model based on epistemic uncertainty estimates (Seeböck et al., 2019a),
which to the best of our knowledge represents the state-of-the-art for
pixel-wise anomaly detection in retinal OCT imaging.

1.2. Contribution

In this work, we introduce a novel generic concept for improving
lesion segmentation models. To the best of our knowledge, this is the
first work that proposes to use the output of an anomaly detection
3

model as additional weak supervision for the segmentation algorithm,
to provide it with supplementary semantic context. We evaluated our
approach using two different in-house and two publicly available OCT
image datasets, providing results on clinical-trial, public challenge and
real-world data. Moreover, we conducted our evaluation for segment-
ing six different lesion targets in total, covering the main lesion types
of AMD. Results demonstrate a consistent performance improvement of
the proposed approach across all datasets and targets. We also provide
an extensive evaluation, showing that this improvement holds valid
under different architectural backbones, sizes of the training set, single-
as well as multi-class settings, external test sets, unseen diseases and
lesion-wise detection performance. This demonstrates the robustness of
the proposed approach as well as its improved data-efficiency.

2. Method

A schematic overview of the proposed Anomaly Guided Segmentation
(ANGUS) approach is provided in Fig. 2. First, an anomaly detection
model is applied to the training set images in order to create weak
anomaly segmentation maps. Secondly, these maps are merged with
the corresponding manual ground truth annotations of the target of
interest, creating a target map with an additional anomaly class. Fi-
nally, these combined maps are used to train the segmentation model
to simultaneously segment the target structure and the anomalous area
in a multi-class segmentation setting. This transforms the 𝑀-class into
a 𝑀 + 1 class segmentation problem, providing supplementary context
and supervision through the extra class without the need of additional
manual labels.

2.1. Anomaly guided segmentation: Using anomaly detection for weak
supervision

Let 𝑋 ∈ R𝑎×𝑏 be a set of 2D training images with 𝑎 × 𝑏 pixels each
nd 𝑌 ∈ 𝑎×𝑏 a corresponding set of manual ground truth labels of the
arget of interest. Moreover, let 𝑓AN be an anomaly detection model
hat is able to predict a binary pixel-wise anomaly segmentation map
or this image domain. Formally, applying the model 𝑓AN to an input

image 𝑥 produces a corresponding binary prediction map of the same
size as the input: 𝑓AN(𝑥) = 𝑦AN. After applying the model 𝑓AN to all
mages 𝑥 of the training set 𝑋, the resulting anomaly maps 𝑦AN can
e used as additional weak supervision in the training process of the
egmentation model.

Here we propose to merge the automatically created anomaly pre-
ictions with the manual annotations of the target of interest 𝑦, result-
ng in a combined target map 𝑦COM:

COM = [𝑦,1AN] (1)

here 𝑦 is the one-hot encoded representation of the original 𝑀 target
lasses, [⋅] represents a tensor concatenation in the class dimension and
AN is the extra pixel-wise binary map for the anomaly predictions,
uch that:

AN(𝑦AN𝑖𝑗
) =

{

1, if 𝑦𝑖𝑗 = 0 and 𝑦AN𝑖𝑗
= 1

0, otherwise,
(2)

here 𝑖 and 𝑗 are the pixel coordinates of the maps. This definition
llows the model to predict the target lesions and also an additional
lass for anomalies, without affecting the original ground truth labeling
f the targets. In other words, the 𝑀 class problem is transformed into
𝑀 + 1 class segmentation task using the automatically created weak

nomaly prediction maps as additional class, as illustrated in Fig. 2. The
egmentation model 𝑓SEG is then trained using these combined target
aps and a weighted Cross-Entropy loss function 𝐿CE, so that it learns

o segment both the targets of interest and the anomalous area:

CE =
𝑀+1
∑

𝑤𝑐 ⋅ 𝑦COM𝑐
⋅ log

(

𝑓SEG(𝑥)𝑐
)

(3)

𝑐=0
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Fig. 2. Overview of our Anomaly Guided Segmentation (ANGUS) approach. First, a pre-trained anomaly detection model is applied to segment the OCT training dataset. Second,
the predicted anomaly maps are merged with the manual annotations of the target of interest. Finally, this combined target map is used to train a multiclass segmentation model.
Fig. 3. Qualitative results in the ’clinical-trial’ test set, showing the original B-scan, manual annotation, prediction of the baseline model and prediction of the proposed ANGUS-Net
for the lesion targets intraretinal cystoid fluid (IRC) and subretinal fluid (SRF).
=
𝑀+1
∑

𝑐=0
𝑤𝑐 ⋅ 𝑦COM𝑐

⋅ log(�̂�COM𝑐
), (4)

with 𝑤𝑐 denoting the weighting hyperparameter for class 𝑐 and 𝑓SEG(𝑥)
is the probability of each class label predicted by model 𝑓SEG for an
input image sample 𝑥.

2.2. Lesion segmentation in retinal OCT images

The strategy presented in Section 2.1 is applied for segmenting
retinal lesions in OCT scans. Section 2.2.1 covers the details of the
model used for anomaly detection, while Section 2.2.2 describes the
architecture of the model.

2.2.1. Anomaly detection model
To generate the weak anomaly segmentation maps in retinal OCT

scans, we make use of the recently published anomaly detection model
WeakAnD (Seeböck et al., 2019a). This approach can be trained on
a dataset of healthy samples without requiring manual annotations.
Instead, it utilizes weak labels of the healthy anatomy produced by
a graph-based surface segmentation algorithm (Garvin et al., 2009),
4

to train a Bayesian U-Net that learns the healthy anatomical structure
of the retina. More specifically, this network is trained to segment 10
retinal layers in healthy subjects, using the automatically generated
weak labels as ground truth. During inference, epistemic uncertainty
estimates of the segmentation output are obtained by Monte Carlo
dropout (Gal and Ghahramani, 2015), i.e. computing the pixel-wise
variance across 50 layer segmentations obtained with active dropout
during inference. These epistemic uncertainty estimates correlate with
deviations from normal layer appearance and result in a first estimate
of anomalous areas by applying a threshold on these uncertainty maps.
The final pixel-wise anomaly maps are obtained after applying a post
processing technique, majority-ray-casting, which extracts blob-shaped
segmentations of the anomalous areas.

2.2.2. Architecture of the segmentation model
Following the majority of approaches for automated lesion segmen-

tation in retinal OCTs, we use a standard U-Net based encoder–decoder
structure with residual connections as architectural backbone. It com-
prises seven levels of depth, where in each level the output of the
encoder block is connected with the corresponding decoder part using
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Fig. 4. Qualitative results in the ’real-world’ test set, showing the original B-scan, manual annotation, prediction of the baseline model and prediction of the proposed ANGUS-Net
for the lesion targets intraretinal cystoid fluid (IRC), hyperreflective foci (HRF), pseudodrusen, subretinal hyperreflective material (SHRM) and subretinal fluid (SRF).
Fig. 5. Qualitative results in the ’RETOUCH challenge’ test set, showing the original B-scan, manual annotation, prediction of the baseline model and prediction of the proposed
ANGUS-Net for the lesion targets intraretinal cystoid fluid (IRC), subretinal fluid (SRF) and pigment epithelial detachment (PED).
a skip connection. The number of output channels goes from 64 in
the first to 2,048 in the bottleneck layer, using powers of 2. While
2 × 2 max-pooling is used for downsampling in the encoding path,
nearest neighbor upsampling is utilized in the decoder to restore the
resolution of the activation maps. Residual convolutional blocks consist
of two convolutional layers with 3 × 3 filters, each followed by a batch
normalization layer and a rectified linear unit (ReLU). The residual
connection within these blocks links the input with the output of the
second batch normalization layer.
5

3. Experimental setup

We assessed (1) the performance of the proposed method on four
different OCT datasets with six individual segmentation targets, (2)
the robustness with respect to the used neural network backbone,
(3) the influence of the amount of training data, (4) its effectiveness
in a multi-target setting, (5) the performance in terms of lesion-wise
detection, (6) the impact of the weighting hyperparameter 𝑤𝑐 , (7) the
generalization performance on an external test set, (8) the performance
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in cross-disease settings and (9) the correlation between the size of the
anomalous area and the performance.

3.1. Materials

We used two separate in-house datasets and one publicly available
dataset (Bogunović et al., 2019) for training and evaluating our model.
Moreover, we used one additional publicly available dataset (Kermany
et al., 2018) solely for external evaluation, without applying any re-
training procedure. The first dataset, ’clinical-trial’ is composed of 66

acula centered Spectralis (Heidelberg Engineering, GER) OCT scans,
ith 512 × 496 × 49 voxels per volume, covering a retinal area
f approximately 6 mm × 2 mm × 6 mm, resulting in an approxi-
ate anatomical voxel size of 12μm, 4μm and 122μm, respectively.
9 volumes were acquired from clinical trial patients suffering from
eovascular AMD, whereas 7 volumes correspond to patients with
etinal vein occlusion (RVO). The dataset was randomly split on a
atient-distinct basis and stratified by disease into train, validation and
est set, with 46, 6 and 14 volumes, respectively. Pixel-wise manual
nnotations of IRC and SRF were created by a retina specialists.

The second dataset, ’real-world’ comprises 60 macula centered Spec-
ralis OCT scans, with resolutions ranging from 512 × 496 × 18 voxels
o 512 × 496 × 97 voxels each. These images were acquired during
linical routine check-ups in neovascular AMD patients who underwent
otential treatment with anti-vascular endothelial growth factor (anti-
EGF) injections. Therefore, this set is representing a less controlled
nd more realistic scenario. The set was randomly split on a patient-
istinct basis into train, validation and test set, using 37, 10 and
3 volumes on each subset, respectively. Five different pathological
tructures were manually annotated by a retina specialist and include
RC, SRF, pseudodrusen, SHRM and HRF.

The third dataset, ’RETOUCH challenge’, consists of the publicly
vailable Retinal OCT Fluid Challenge (RETOUCH) dataset with pixel-
ise manual annotations of IRC, SRF and PED (Bogunović et al., 2019).
or simplicity and not to exclude any pixels from the evaluation, the
eference annotation from only one center (MUV) was used. We utilized
ll 38 macula centered Spectralis OCT scans with 512 × 496 × 49 voxels
er volume, covering a retinal area of 6mm× 2mm× 6mm. We utilized
he predefined split of 24 training and 14 test volumes. We further
andomly split the training set into train and validation set, with 18
nd 6 volumes, respectively.

The external evaluation set ’OCT-Kermany’ consists of a subset of
he publicly available Retinal OCT dataset (Kermany et al., 2018) with
ixel-wise manual annotations of IRC, SRF and PED. In particular, we
sed the DME’ and ‘DRUSEN’ groups of the original test set, each
omprising 250 2D scans. We excluded 24 (DME) and 13 (DRUSEN)
amples with invalid manual lesion annotations (e.g. non-closed con-
ours) resulting in a final dataset ’OCT-Kermany’ consisting of 463
cans.

.2. Experiments

For the three datasets ’clinical-trial’, ’real-world’ and ’RETOUCH
hallenge’, we trained and evaluated the proposed model for each
arget separately. This means that we obtained two final models in the
clinical-trial’ dataset, one for IRC and one for SRF, five final models
n the ’real-world’ dataset for IRC, SRF, pseudodrusen, SHRM and HRF,
nd three final models in the ’RETOUCH challenge’ for IRC, SRF and
ED, respectively. A binary segmentation model without additional
eak anomaly supervision was trained for each target as a comparison
aseline (’U-Net’), using the same settings and architectural backbone
o ensure a fair comparison.

To evaluate the robustness of the proposed approach with respect
o (A) the backbone structure, (B) the number of training samples, (C)
he number of targets trained on simultaneously, (D) the segmentation
erformance on a lesion-wise basis, (E) the influence of the weighting
6

yperparameter 𝑤𝑐 , (F) the performance on external data as well as
unseen diseases and (G) the influence that the size of the anomalous
area has on the final performance we performed multiple evaluation
experiments as follows:

• A: We used four alternative segmentation model backbones to
evaluate the robustness of the approach regarding the architec-
ture. First, we conducted experiments using a backbone structure
with fewer parameters, a smaller receptive field and a lower
number of layers in total, consisting of a U-Net with 6 lev-
els of depth (’U-Net-6’, ’ANGUS-Net-6’). In particular, this ar-
chitecture followed the structure of the architecture described
in Section 2.2.2, except that only 6 levels of depth are used,
with the number of output channels going from 64 in the first
to 1,024 in the bottleneck layer, using powers of 2 (64-128-
256-512-1024-1024). Second, we performed experiments using
’DeepLabv3’ (Chen et al., 2017) as an alternative architectural
backbone (’DeepLabv3’, ’ANGUS-DeepLabv3’). ‘DeepLabv3’ is a
widely used state-of-the-art segmentation network with signif-
icant differences with respect to the U-Net, including depth-
wise separable convolutions and atrous spatial pyramid pooling
(ASPP). Third, we used the Attention U-Net (Schlemper et al.,
2019) as an alternative backbone (’AttUNet’, ’ANGUS-AttUNet’).
As forth alternative, we conducted experiments using the Tran-
sUNet (Chen et al., 2021), a model combining Transformers and
U-Net for segmentation (’TransUNet’, ’ANGUS-TransUNet’)). In
contrast to the other architectures, the latter two alternative seg-
mentation model backbones explicitly integrate attention mecha-
nisms into their architecture.

• B: We conducted evaluation experiments of the models using
a reduced number of training samples. Subsets were randomly
created with 25%, 50% and 75% of the total number of patients
for the two in-house training datasets.

• C: We trained an additional model to predict all targets simul-
taneously in order to assess the effect of the number of target
classes. In particular, a baseline model was trained on the ’real-
world’ dataset to predict IRC, SRF, pseudodrusen, SHRM and HRF
simultaneously, and the proposed approach was trained using
the weak anomaly class in addition (’U-Net-Multi’, ’ANGUS-Net-
Multi’). Furthermore, we performed the same experiment using
the alternative architectures from evaluation experiment A (U-
Net with 6 levels of depth: ’U-Net-6-Multi’, ’ANGUS-Net-6-Multi’,
DeepLabv3: ’DeepLabv3-Multi’, ’ANGUS-DeepLabv3-Multi’, Atten-
tion U-Net: ’AttUNet-Multi’, ’ANGUS-AttUNet-Multi’, and Tran-
sUNet: ’TransUNet-Multi’, ’ANGUS-TransUNet-Multi’).

• D: In order to investigate the performance of the models on a
lesion-wise basis, we computed lesion-detection Recall (LD-Re𝑑)
and lesion-detection Precision (LD-Pr𝑑) as proposed in Seeböck
et al. (2019a). For each individual lesion defined as a connected
component, the Dice with respect to the manual annotation is
computed. The amount of true positives is then counted as the
number of lesions with a Dice higher than a threshold 𝑑 and used
to calculate LD-Re𝑑 and LD-Pr𝑑 . This means that annotated lesions
that are missed are counted as false negatives, and predicted
lesions without overlap are counted as false positives. By varying
the threshold 𝑑 in the range [0, 1], both LD-Re and LD-Pr curves
can be computed. We provide plots of these curves as well as
quantitative scores in terms of area under the curve (AUC) to
allow a more comprehensive evaluation.

• E: We analyzed the influence of the weighting hyperparameter
𝑤𝑐 , by evaluating the models ’ANGUS-Net-Multi’, ’ANGUS-Net-
6-Multi’, ’ANGUS-DeepLabv3-Multi’, ’ANGUS-AttUNet-Multi’ and
’ANGUS-TransUNet-Multi’ on the ‘real-world’ dataset with varying
weights for the anomaly-class (𝑤𝑐 = [0.01, 0.1, 1, 2, 5, 10, 50]),

while all other class weights remained constant.
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• F: We investigated the external generalization performance of the
proposed approach by (F.1) directly applying the trained models
of experiment A on an external publicly available dataset (Ker-
many et al., 2018) ’OCT-Kermany’ and (F.2) conducting cross-
disease experiments using the RETOUCH dataset. For the cross-
disease experiment F.2 we divided the ’RETOUCH challenge’
dataset into two subsets by disease: ’RETOUCH challenge AMD’
(9 training, 3 validation, 7 test volumes), consisting only of AMD
patients, and ’RETOUCH challenge RVO’ (9 training, 3 validation,
7 test volumes) comprising only RVO patients. We trained both
’U-Net’ and ’ANGUS-Net’ on one subset and evaluated them
on the test set of the other subset respectively. We quantified
performance only for IRC and SRF classes, as the OCT volumes
of the RVO patients did not contain any PED lesions.

• G: To evaluate the influence that the size of the anomalous
area has on the final performance, we computed the Spearman’s
correlation coefficient (Zar, 2005) between Dice values and the
set difference between the anomalous area and the target lesion,
namely the ‘residual anomalous area’. We performed this compar-
ison for all ANGUS models, on all datasets and targets. In Fig. 1(d)
this area is represented in light blue.

We used precision, recall and Dice to evaluate the performance
of the segmentation models. Paired Wilcoxon signed-rank tests with
𝛼 = 0.05 were used to test for statistical significance in the differences
of the evaluation metrics. In the Supplementary Material, we provide
details of an additional experiment using bothWeakAnD (Seeböck et al.,
2019a) and the recently proposed diffusion based anomaly detection
method AnoDDPM (Wyatt et al., 2022) as unsupervised baselines for
the task of lesion segmentation (Supplemental Experiment A). More-
over, we also compare both approaches in terms of pixel-level anomaly
detection performance in OCT (Supplemental Experiment B).

3.3. Training details

As a pre-processing step, the intensity values of each individual
B-scan were rescaled between 0 and 1.

We did not perform any training or optimization of the anomaly de-
tection approach. Instead we utilized the final trained model WeakAnD
(with layer-flattening) from Seeböck et al. (2019a) in an ’out-of-the-box’
setting, using the standard parameters reported in the original paper,
namely Monte-Carlo dropout sampling (50 samples), post-processing
(𝑠 = 10, 𝑚𝑐 = 4, 𝑚𝑜 = 2), two iterations of majority-ray-casting (𝑣(1) = 3,
(2) = 4) and a threshold of 𝑡 = 0.10.

For training the segmentation model we used Adam optimiza-
ion (Kingma and Ba, 2014) with standard parameters 𝛽1 = 0.90, 𝛽2 =
.999, 𝜖 = 1e−8, weight decay 𝜆 = 1e−5 and a learning rate of 1e−4. The
arameters of the network were initialized using He initialization (He
t al., 2015). The weighting parameters 𝑤𝑐 were chosen empirically. In
he ’clinical-trial’ dataset an equal weighting of 𝑤0 = 𝑤1 = 𝑤2 = 1 was
hosen for all classes, except for ’ANGUS-Net-6’, ‘ANGUS-DeepLabv3’,
ANGUS-AttUNet’ and ‘ANGUS-TransUNet’ where 𝑤1 = 2 was used for
he IRC target class. In the ’real-world’ dataset 𝑤0 = 0.1 was chosen for
he background, 𝑤1 = 10 for all targets except SHRM (𝑤1 = 15), and
2 = 2 for the anomaly class except for the SHRM models with 𝑤1 = 1.

n the ’RETOUCH challenge’ dataset 𝑤0 = 𝑤2 = 1 and 𝑤1 = 2 were
hosen for all experiments, except for 𝑤1 = 1 for SRF for ’ANGUS-Net-6’,
1 = 5 for SRF for ’ANGUS-DeepLabv3’ and ’ANGUS-TransUNet’, 𝑤1 = 1

or PED for ’ANGUS-TransUNet’ and 𝑤1 = 5 for PED for ’ANGUS-Net-6’
nd ’ANGUS-DeepLabv3’. For all models in experiment C, 𝑤0 = 0.1 was
sed for background, 𝑤2 = 𝑤3 = 𝑤4 = 𝑤5 = 5 for all target classes and
6 = 2 for the anomaly class.

During training, random data augmentations were applied to the
nput images, including horizontal flipping, rotations up to 20◦, hor-
zontal/vertical translations up to 20% of the B-scan size, scaling up
7

o 10% and brightness and contrast jitter up to 10%. Furthermore, we
lso trained the model using speckle and Gaussian noise augmentation,
ith 𝜇 = 0 and 𝜎 = 0.1 parameters each. The models were trained for
50 epochs with a mini batch size of 2. The one with the best Dice on
he validation set was selected as the final model for evaluation on the
est set.

. Results

Quantitative results of the proposed method and the baseline in
clinical-trial’, ’real-world’ and ’RETOUCH challenge’ test sets are pro-
ided in Table 1. For each target class, Dice, precision and recall are
rovided, and statistically significant differences are indicated with an
sterisk. A performance improvement in terms of Dice is observed for
ll targets in comparison with the baseline model, easily noticeable in
he ’real-world’ dataset. For all experimental combinations in Table 1,
he proposed method outperforms the baseline with respect to Dice
10 out of 10 combinations). The largest absolute improvement in Dice
s observed in this dataset for SHRM segmentation (0.287), while the
mallest is seen for SRF in the ’RETOUCH challenge’ test set. This is
lso reflected in the qualitative results, illustrated in Fig. 3, Fig. 4 and
ig. 5. For each dataset and target, a representative sample with the
riginal B-scan, its manual annotation, the prediction of the baseline
odel and those obtained with the proposed approach are depicted. In

he first row of Fig. 3, the baseline model misses a significant amount of
RC, while the segmentation output of the ANGUS-Net more accurately
esembles the manual annotation. This aligns with the quantitative
esults, showing a higher recall for the proposed model compared to
he baseline. A typical example for SRF segmentation in the ’clinical-
rial’ dataset is provided in the second row of Fig. 3, with a substantial
verlap between manual annotation, baseline and ANGUS-Net predic-
ion. The performance improvements by the proposed method in the
real-world’ dataset are visually reflected in Fig. 4, including a reduction
f outliers for segmenting IRC, HRF and pseudodrusen, an increased
verlap between manual annotations and model segmentations for
HRM and a decrease of severe oversegmentation for SRF. Fig. 5
epicts typical results on the ’RETOUCH challenge’ test set, showing
igher sensitivity at the expense of lower precision for the ANGUS-Net
ompared to the baseline for IRC, similar results for SRF, and a clearly
mproved predictions by the proposed model for PED.

In some cases, the baseline shows either a significantly higher
recision or recall but is outperformed in terms of Dice by the proposed
pproach. As Dice is the harmonic mean between precision and recall,
his indicates either a under- or over-segmentation of the baseline
odel. This is also reflected in the qualitative results. In Fig. 3 the

aseline model under-segments IRC, coinciding with a significantly
igher precision but lower Dice in Table 1 for IRC in the ’clinical-trial’
ataset. In Fig. 4 the baseline model over-segments SRF, concurring
ith a significantly higher recall but lower Dice in Table 1 for SRF in

he ’real-world’ dataset.

xperiment A. Table 2 provides quantitative results in the ’clinical-
rial’, ’real-world’ and ’RETOUCH challenge’ test sets, using four different
ackbones. The results are in line with those obtained using the original
tructure. For almost all architectures and targets, and in all datasets,
ignificant performance improvements for the ANGUS-Net approach
re observed. In particular, all targets in the ’real-world’ test set show
significantly higher performance in terms of Dice. The only com-

inations without improvement are IRC using the U-Net-6 and SRF
sing the TransUNet architecture in the ’clinical-trial’ dataset, SRF
sing the DeepLabv3 architecture in the ’RETOUCH challenge’ dataset
nd IRC using the TransUNet architecture in the ’RETOUCH challenge’
ataset. Overall, in 36 out of 40 combinations the proposed approach
utperformed the baseline in terms of Dice, and the average Dice across
argets was always higher. The largest absolute increase in Dice is
oticed for PED in ’RETOUCH challenge’ (+0.265 for U-Net-6, +0.245

for AttUNet, +0.219 for TransUNet), SRF in clinical trial (+0.242 for
AttUNet) and SHRM in ’real-world’ dataset (+0.185 for U-Net-6, +0.111

for DeepLabv3).
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Table 1
Quantitative segmentation results on the ‘clinical-trial’, ‘real-world’ and ‘RETOUCH challenge’ test sets. Dice, precision and recall (± standard deviation) are shown for each target
individually and for the average across all targets. Highest Dice values are highlighted in bold, while highest precision and recall values are indicated in italics. The asterisk
indicates statistically significant differences.

Model Dice Precision Recall Dice Precision Recall Dice Precision Recall

clinical-trial

IRC SRF Average across targets

U-Net 0.645 (±0.24) 0.685 (±0.26)* 0.695 (±0.24) 0.790 (±0.24) 0.846 (±0.20) 0.808 (±0.28) 0.717 0.766 0.751
ANGUS-Net 0.658 (±0.23) 0.667 (±0.25) 0.718 (±0.22)* 0.795 (±0.23) 0.826 (±0.21) 0.817 (±0.26) 0.727 0.746 0.767

real-world

IRC HRF Pseudodrusen

U-Net 0.267 (±0.24) 0.237 (±0.25) 0.547 (±0.40) 0.283 (±0.21) 0.196 (±0.17) 0.727 (±0.36)* 0.129 (±0.08) 0.073 (±0.05) 0.842 (±0.27)*
ANGUS-Net 0.363 (±0.27)* 0.385 (±0.33)* 0.593 (±0.36) 0.329 (±0.24)* 0.271 (±0.23)* 0.581 (±0.36) 0.210 (±0.16)* 0.142 (±0.12)* 0.609 (±0.34)

SHRM SRF Average across targets

U-Net 0.413 (±0.25) 0.463 (±0.32) 0.464 (±0.26) 0.467 (±0.28) 0.360 (±0.25) 0.850 (±0.32)* 0.312 0.266 0.686
ANGUS-Net 0.699 (±0.27)* 0.691 (±0.30)* 0.781 (±0.28)* 0.574 (±0.34)* 0.656 (±0.36)* 0.598 (±0.37) 0.435 0.429 0.633

RETOUCH

IRC SRF PED

U-Net 0.723 (±0.23) 0.800 (±0.21)* 0.708 (±0.25) 0.638 (±0.30) 0.732 (±0.30) 0.630 (±0.32) 0.424 (±0.33) 0.815 (±0.38) 0.330 (±0.29)
ANGUS-Net 0.725 (±0.19)* 0.693 (±0.20) 0.820 (±0.22)* 0.640 (±0.28) 0.730 (±0.28) 0.629 (±0.30) 0.638 (±0.28)* 0.855 (±0.27)* 0.559 (±0.30)*

Average across targets

U-Net 0.595 0.782 0.556
ANGUS-Net 0.667 0.759 0.669
m
Experiment B. Fig. 6 provides plots, illustrating the performance of
both baseline and ANGUS-Net in ’clinical-trial’ and ’real-world’ test
sets when trained with fewer samples. For almost all combinations
of datasets, targets and number of training samples (in 46 out of
48 combinations), the proposed model consistently outperformed the
baseline. For IRC in the ’clinical-trial’ with 50% training data and SRF
in the ’real-world’ dataset with 50% training samples the Dice of the
baseline is slightly higher. In general, we noticed that a larger number
of training samples does not always lead to a better performance in the
test set.

Experiment C. Quantitative results are shown in Table 3 for the base-
line and the proposed method using both the original and the adapted
backbone structures, when trained using a multiclass objective for
simultaneously predicting all targets. A clear performance improvement
is noticed also under this setting when incorporating the anomalous
region as an additional class. In particular, significant performance
improvements in Dice were observed for almost all combinations of
targets and backbone structures (in 21 out of 25 combinations). Only
for the segmentation of IRC using U-Net-6-Multi and DeepLabv3-Multi,
and for SHRM using AttUNet-Multi and TransUNet-Multi no performance
mprovement was noticed, while the average Dice across all targets was
mproved for all backbones.

xperiment D. Fig. 7 illustrates the results. The proposed ANGUS-Net
utperformed the baseline in terms of all lesion-wise evaluation scores
or all targets and datasets, except for IRC in ’RETOUCH challenge’ (19
ut of 20 combinations). SRF in the ’clinical-trial’ test set exhibited the
mallest improvement in terms of absolute difference in AUC, while
he largest improvement is noticed for IRC in the ’real-world’ test set.
dditionally, the discrepancy in LD-Re𝑑 and LD-Pr𝑑 values are clearly

arger for the baseline compared to the proposed ANGUS-Net.

xperiment E. Plots illustrating the influence of hyperparameter 𝑤𝑐
re provided in Fig. 8. All multi-target backbones showed a similar
ehavior, with worse performance of the proposed method in case
f extreme low or high values for the anomaly class, and superior
erformance of the proposed method when using the same or a slightly
ower weight for the anomaly class than for the target classes (1,2 or
).

xperiment F. The results of experiment F.1, directly applying the
rained models on the external evaluation dataset ’OCT-Kermany’, are
epicted in Fig. 9. For all targets, the proposed method achieves an
mprovement in terms of average Dice performance across all models:
.68 vs 0.71 for IRC (Fig. 9(a)), 0.57 vs 0.61 for SRF (Fig. 9(b)), and
.29 vs. 0.58 for PED (Fig. 9(c)).

Cross-disease evaluation results for experiment F.2 on the ’RE-
OUCH challenge RVO’ and ’RETOUCH challenge AMD’ test sets are
hown in Fig. 10. In both settings, the proposed approach ’ANGUS-
et’ achieves higher Dice scores compared to the baseline ’U-Net’
8

odel. More specifically, the ’U-Net’/’ANGUS-Net’ models trained on
’RETOUCH challenge AMD’ and evaluated on ’RETOUCH challenge RVO’
(Fig. 10(a)) achieve 0.70/0.71 for IRC and 0.67/0.75 for SRF, respec-
tively. The ’U-Net’/’ANGUS-Net’ models trained on ’RETOUCH challenge
RVO’ and evaluated on ’RETOUCH challenge AMD’ (Fig. 10(b)) achieve
0.51/0.58 for IRC and 0.34/0.42 for SRF, respectively.

Experiment G. The mean Spearman’s correlation coefficient between
the Dice values achieved by the ’ANGUS-Net’/’ANGUS-Net-6’/’ANGUS-
DeepLabv3’/’ANGUS-AttUNet’/’ANGUS-TransUNet’ models and the
‘residual anomalous area’ across the three datasets and targets are
0.14/0.10/0.14/0.13/0.16. These indicate a very weak association
between a potential performance decrease related to a smaller residual
anomalous area. This is in line with the observation in experiment C,
showing also consistent performance improvements of our approach for
the multi-class segmentation models.

These results clearly demonstrate that the proposed approach is
robust with respect to the used backbone structure, quantity of train-
ing samples as well as the number of target classes, various out-of-
distribution scenarios and reduces the number of false positive and false
negative detected lesions.

5. Discussion

We propose a novel way to improve the performance of lesion
segmentation models by using anomaly detection as an additional weak
supervision signal. We hypothesized that the additional information
helps to overcome the lack of explicit guidance and therefore is useful
to learn the occurrence of lesions within unhealthy areas. In this
study, results show that the proposed strategy achieves better results
compared to using a standard supervised learning model with no extra
context. The observed segmentation improvements of several chal-
lenging targets are consistent across different experiments, indicating
that the proposed approach can enhance model’s ability to delineate
abnormal retinal lesions.

In particular, we hypothesize that the incorporation of an addi-
tional anomaly map provides spatial context to better localize the
structures of interest. This can also be described as ’attention through
anomaly-supervision’, as the extra labels guide the network’s focus
towards the lesion. The results in our experiments indicate that this
’attention through anomaly-supervision’ provides complementary infor-
mation compared to attention mechanisms built into the architecture
of the network, as the segmentation performance is also consistently
improved for the Attention U-Net (Schlemper et al., 2019) and the
TransUNet (Chen et al., 2021). Moreover, the network not only learns
to distinguish the target class from everything else, but also to differ-
entiate between the target class, all other types of anomalies and the

healthy retina, making the model much more semantically powerful.
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Fig. 6. Experiment B: Plots showing the quantitative performance in both (a) ’clinical-trial’ and (b) ’real-world’ test sets for models trained with 25%, 50%, 75% and 100% of the
training data. While the results of the baseline are illustrated in orange, the ones of the proposed ANGUS-Net are highlighted in blue.

Fig. 7. Experiment D: Lesion-wise detection performance in (a) ’clinical-trial’, (b) ’real-world’ and (c) ’RETOUCH challenge’ test sets. The lesion-wise precision/recall curves
(dashed/solid) are illustrated both for the baseline model (orange) and the proposed ANGUS-Net (blue). In (a) ’clinical-trial’, the baseline achieved an lesion-wise precision/recall
area under the curve (AUC) of 0.55/0.71 for IRC and 0.58/0.79 for SRF, while the proposed method outperformed the baseline in terms of this measure with 0.79/0.81 and
0.80/0.83, respectively. In (b) ’real-world’, the baseline is clearly outperformed by the proposed method, which is reflected in lesion-wise precision/recall AUC values of 0.12/0.28
vs. 0.77/0.73 for IRC, 0.23/0.36 vs. 0.65/0.73 for HRF, 0.02/0.13 vs. 0.47/0.44 for Pseudodrusen, 0.06/0.40 vs. 0.74/0.76 for SHRM and 0.28/0.49 vs. 0.76/0.77 for SRF. In (c)
’RETOUCH challenge’, the baseline is outperformed by the proposed method except for a single value in terms of lesion-wise precision/recall AUC: 0.744/0.778 vs. 0.750/0.744
for IRC, 0.280/0.618 vs. 0.686/0.677 for SRF and 0.526/0.468 vs. 0.658/0.666 for PED.
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Table 2
Experiment A: Quantitative segmentation results using a different structure for the backbone on the ‘clinical-trial’, ‘real-world’ and ‘RETOUCH challenge’ test sets. Dice, precision
and recall (± standard deviation) are shown for each target individually and for the average across all targets. Highest Dice values are highlighted in bold, while highest precision
and recall values are indicated in italics. The asterisk indicates statistically significant differences.

Model Dice Precision Recall Dice Precision Recall Dice Precision Recall

clinical-trial

IRC SRF Average across targets

U-Net-6 0.662 (±0.24)* 0.695 (±0.26)* 0.709 (±0.24) 0.791 (±0.25) 0.845 (±0.20)* 0.801 (±0.28) 0.727 0.770 0.755
ANGUS-Net-6 0.659 (±0.23) 0.664 (±0.26) 0.717 (±0.22) 0.805 (±0.20)* 0.801 (±0.21) 0.858 (±0.22)* 0.732 0.732 0.788

DeepLabv3 0.622 (±0.22) 0.627 (±0.25)* 0.691 (±0.21) 0.782 (±0.25) 0.827 (±0.22)* 0.794 (±0.28) 0.702 0.727 0.743
ANGUS-DeepLabv3 0.631 (±0.21) 0.578 (±0.23) 0.779 (±0.19)* 0.803 (±0.20) 0.824 (±0.21) 0.825 (±0.22)* 0.717 0.701 0.802

AttUNet 0.647 (±0.24) 0.639 (±0.27)* 0.741 (±0.21) 0.491 (±0.26) 0.824 (±0.30) 0.390 (±0.25) 0.569 0.732 0.566
ANGUS-AttUNet 0.645 (±0.22) 0.591 (±0.24) 0.799 (±0.22)* 0.733 (±0.27)* 0.860 (±0.20)* 0.713 (±0.30)* 0.689 0.725 0.756

TransUNet 0.628 (±0.24) 0.734 (±0.28)* 0.603 (±0.23) 0.808 (±0.21)* 0.848 (±0.19) 0.818 (±0.24)* 0.718 0.791 0.711
ANGUS-TransUNet 0.652 (±0.22)* 0.665 (±0.25) 0.713 (±0.23)* 0.771 (±0.25) 0.855 (±0.19)* 0.767 (±0.28) 0.711 0.760 0.740

real-world

IRC HRF Pseudodrusen

U-Net-6 0.313 (±0.22) 0.245 (±0.21) 0.769 (±0.31)* 0.260 (±0.22) 0.180 (±0.17) 0.675 (±0.38)* 0.134 (±0.09) 0.076 (±0.06) 0.813 (±0.32)*
ANGUS-Net-6 0.373 (±0.27)* 0.328 (±0.28)* 0.679 (±0.34) 0.345 (±0.25)* 0.292 (±0.24)* 0.565 (±0.37) 0.177 (±0.12)* 0.107 (±0.08)* 0.741 (±0.33)

DeepLabv3 0.149 (±0.22) 0.229 (±0.30) 0.211 (±0.32) 0.167 (±0.15) 0.108 (±0.11) 0.553 (±0.39)* 0.104 (±0.07) 0.059 (±0.05) 0.812 (±0.29)*
ANGUS-DeepLabv3 0.237 (±0.27)* 0.241 (±0.29) 0.343 (±0.39)* 0.201 (±0.18)* 0.149 (±0.15)* 0.415 (±0.35) 0.132 (±0.11)* 0.080 (±0.08)* 0.667 (±0.36)

AttUNet 0.238 (±0.23) 0.266 (±0.266) 0.440 (±0.40)* 0.274 (±0.21) 0.190 (±0.17) 0.688 (±0.37)* 0.096 (±0.08) 0.054 (±0.05) 0.867 (±0.28)
ANGUS-AttUNet 0.242 (±0.31) 0.243 (±0.31) 0.346 (±0.412) 0.336 (±0.24)* 0.263 (±0.21)* 0.617 (±0.35) 0.139 (±0.09)* 0.079 (±0.06)* 0.869 (±0.24)

TransUNet 0.210 (±0.27) 0.222 (±0.29) 0.304 (±0.39) 0.307 (±0.24) 0.229 (±0.20) 0.618 (±0.37)* 0.123 (±0.13) 0.077 (±0.11) 0.786 (±0.35)
ANGUS-TransUNet 0.246 (±0.31)* 0.278 (±0.35)* 0.290 (±0.37) 0.321 (±0.24)* 0.250 (±0.21)* 0.58837 (±0.) 0.186 (±0.13)* 0.119 (±0.10)* 0.788 (±0.30)

SHRM SRF Average across targets

U-Net-6 0.473 (±0.28) 0.708 (±0.31) 0.503 (±0.34) 0.444 (±0.27) 0.335 (±0.24) 0.843 (±0.33)* 0.325 0.309 0.721
ANGUS-Net-6 0.658 (±0.26)* 0.706 (±0.27) 0.717 (±0.29)* 0.581 (±0.33)* 0.639 (±0.36)* 0.615 (±0.34) 0.427 0.414 0.663

DeepLabv3 0.480 (±0.26) 0.570 (±0.35) 0.484 (±0.26) 0.438 (±0.27) 0.347 (±0.25) 0.818 (±0.35)* 0.268 0.263 0.576
ANGUS-DeepLabv3 0.591 (±0.27)* 0.739 (±0.27)* 0.613 (±0.29)* 0.533 (±0.34)* 0.590 (±0.34)* 0.568 (±0.37) 0.339 0.360 0.521

AttUNet 0.471 (±0.25) 0.536 (±0.33) 0.619 (±0.35)* 0.519 (±0.29) 0.410 (±0.26) 0.848 (±0.33)* 0.319 0.291 0.692
ANGUS-AttUNet 0.480 (±0.35) 0.655 (±0.41)* 0.440 (±0.36) 0.597 (±0.32)* 0.646 (±0.34)* 0.634 (±0.34) 0.359 0.377 0.581

TransUNet 0.529 (±0.)22 0.536 (±0.28) 0.675 (±0.22)* 0.462 (±0.28) 0.391 (±0.27) 0.780 (±0.36)* 0.326 0.291 0.633
ANGUS-TransUNet 0.532 (±0.34) 0.656 (±0.39)* 0.497 (±0.34) 0.586 (±0.31)* 0.619 (±0.31)* 0.678 (±0.35)* 0.374 0.384 0.568

RETOUCH

IRC SRF PED

U-Net-6 0.729 (±0.23) 0.800 (±0.21)* 0.713 (±0.25) 0.652 (±0.28)* 0.800 (±0.25)* 0.625 (±0.31) 0.461 (±0.32) 0.825 (±0.37)* 0.365 (±0.30)
ANGUS-Net-6 0.747(±0.19) 0.740(±0.187) 0.806 (±0.213)* 0.644 (±0.26) 0.752 (±0.26) 0.654 (±0.30) 0.726 (±0.25)* 0.799 (±0.24) 0.720(±0.27)*

DeepLabv3 0.685 (±0.22) 0.732 (±0.20)* 0.701 (±0.25) 0.616 (±0.27)* 0.716 (±0.28) 0.624 (±0.31) 0.532 (±0.31) 0.842 (±0.34)* 0.433 (±0.29)
ANGUS-DeepLabv3 0.690 (±0.20)* 0.645 (±0.21) 0.798 (±0.22)* 0.587 (±0.28) 0.605 (±0.28) 0.689 (±0.33)* 0.639 (±0.28)* 0.792 (±0.27) 0.610 (±0.30)*

AttUNet 0.690 (±0.25) 0.782 (±0.24)* 0.662 (±0.27) 0.578 (±0.31) 0.785 (±0.29)* 0.523 (±0.32) 0.294 (±0.30) 0.717 (±0.45) 0.215 (±0.25)
ANGUS-AttUNet 0.733 (±0.18) 0.714 (±0.19) 0.811 (±0.22)* 0.612 (±0.28)* 0.732 (±0.29) 0.594 (±0.31)* 0.539 (±0.27)* 0.823 (±0.31)* 0.441 (±0.26)*

TransUNet 0.715 (±0.21)* 0.788 (±0.20)* 0.701 (±0.24) 0.625 (±0.29) 0.721 (±0.30)* 0.640 (±0.31) 0.410 (±0.32) 0.810 (±0.38) 0.317 (±0.28)
ANGUS-TransUNet 0.698 (±0.19) 0.634 (±0.20) 0.849 (±0.21)* 0.637 (±0.24) 0.610 (±0.27) 0.799 (±0.26)* 0.629 (±0.29)* 0.845 (±0.28)* 0.544 (±0.30)*

Average across targets

U-Net-6 0.614 0.808 0.567
ANGUS-Net-6 0.705 0.764 0.726

DeepLabv3 0.684 0.791 0.677
ANGUS-DeepLabv3 0.721 0.755 0.757

AttUNet 0.521 0.762 0.467
ANGUS-AttUNet 0.628 0.756 0.615

TransUNet 0.583 0.773 0.552
ANGUS-TransUNet 0.654 0.696 0.731
Table 3
Experiment C: Quantitative segmentation results for the multi-class models on the ’real-world’ test set, trained on all targets simultaneously (IRC, HRF, Pseudodrusen, SHRM, SRF).
Dice, precision and recall (± standard deviation) are shown for each target individually and for the average across all targets. Highest Dice values are highlighted in bold, while
highest precision and recall values are indicated in italics. The asterisk indicates statistically significant differences.
Model Dice Precision Recall Dice Precision Recall Dice Precision Recall

IRC HRF Pseudodrusen

U-Net-6-Multi 0.267 (±0.26) 0.213 (±0.25) 0.640 (±0.42)* 0.262 (±0.21) 0.183 (±0.17) 0.657 (±0.38)* 0.136 (±0.09) 0.077 (±0.06) 0.894 (±0.20)*
ANGUS-Net-6-Multi 0.251 (±0.30) 0.247 (±0.31)* 0.417 (±0.44) 0.335 (±0.26)* 0.287 (±0.25)* 0.553 (±0.35) 0.176 (±0.10)* 0.104 (±0.06)* 0.750 (±0.29)

DeepLabv3-Multi 0.235 (±0.24) 0.189 (±0.23) 0.523 (±0.43)* 0.498 (±0.27) 0.396 (±0.25) 0.803 (±0.34)* 0.099 (±0.06) 0.054 (±0.04) 0.870 (±0.21)*
ANGUS-DeepLabv3-Multi 0.231 (±0.29) 0.260 (±0.32)* 0.273 (±0.35) 0.559 (±0.31)* 0.611 (±0.32)* 0.597 (±0.34) 0.146 (±0.09)* 0.085 (±0.06)* 0.744 (±0.29)

AttUNet-Multi 0.205 (±0.27) 0.193 (±0.27) 0.403 (±0.45)* 0.193 (±0.18) 0.131 (±0.15) 0.692 (±0.36)* 0.053 (±0.04) 0.027 (±0.02) 0.949 (±0.14)*
ANGUS-AttUNet-Multi 0.291 (±0.32)* 0.291 (±0.33)* 0.381 (±0.40) 0.351 (±0.26)* 0.313 (±0.27)* 0.536 (±0.35) 0.166 (±0.10)* 0.097 (±0.07)* 0.846 (±0.22)

TransUNet-Multi 0.206 (±0.26) 0.167 (±0.23) 0.409 (±0.44)* 0.218 (±0.19) 0.148 (±0.15) 0.614 (±0.38)* 0.115 (±0.08) 0.064 (±0.05) 0.869 (±0.23)*
ANGUS-TransUNet-Multi 0.244 (±0.31)* 0.274 (±0.34)* 0.317 (±0.40) 0.318 (±0.26)* 0.283 (±0.26)* 0.461 (±0.36) 0.160 (±0.11)* 0.094 (±0.07)* 0.832 (±0.27)

U-Net-Multi 0.321 (±0.27) 0.272 (±0.27) 0.691 (±0.39)* 0.300 (±0.24) 0.226 (±0.21) 0.639 (±0.36)* 0.125 (±0.08) 0.069 (±0.05) 0.911 (±0.16)*
ANGUS-Net-Multi 0.326 (±0.29)* 0.300 (±0.30)* 0.532 (±0.40) 0.325 (±0.24)* 0.286 (±0.25)* 0.518 (±0.34) 0.142 (±0.10)* 0.082 (±0.06)* 0.771 (±0.32)

SHRM SRF Average across targets

U-Net-6-Multi 0.609 (±0.28) 0.720 (±0.29) 0.583 (±0.30) 0.531 (±0.28) 0.438 (±0.27) 0.811 (±0.33)* 0.361 0.326 0.717
ANGUS-Net-6-Multi 0.683 (±0.24)* 0.731 (±0.26) 0.698 (±0.27)* 0.582 (±0.31)* 0.647 (±0.32)* 0.616 (±0.35) 0.405 0.403 0.607

DeepLabv3-Multi 0.194 (±0.27) 0.446 (±0.46) 0.166 (±0.26) 0.153 (±0.15) 0.097 (±0.10) 0.483 (±0.38)* 0.236 0.236 0.569
ANGUS-DeepLabv3-Multi 0.308 (±0.30) 0.651 (±0.45)* 0.236 (±0.27) 0.176 (±0.18)* 0.159 (±0.19)* 0.282 (±0.31) 0.284 0.353 0.426

AttUNet-Multi 0.447 (±0.29)* 0.524 (±0.37) 0.479 (±0.28)* 0.447 (±0.29) 0.383 (±0.28) 0.734 (±0.36)* 0.269 0.252 0.651
ANGUS-AttUNet-Multi 0.299 (±0.26) 0.633 (±0.43)* 0.221 (±0.21) 0.583 (±0.31)* 0.680 (±0.32)* 0.610 (±0.34) 0.339 0.403 0.519

TransUNet-Multi 0.564 (±0.24)* 0.710 (±0.30) 0.543 (±0.25)* 0.501 (±0.28) 0.410 (±0.27) 0.810 (±0.33)* 0.321 0.300 0.649
ANGUS-TransUNet-Multi 0.371 (±0.29) 0.682 (±0.43) 0.290 (±0.26) 0.603 (±0.31)* 0.584 (±0.31)* 0.748 (±0.33) 0.339 0.383 0.530

U-Net-Multi 0.491 (±0.30) 0.706 (±0.35) 0.4335 (±0.30) 0.503 (±0.28) 0.430 (±0.27) 0.770 (±0.34)* 0.348 0.341 0.689
ANGUS-Net-Multi 0.608 (±0.25)* 0.759 (±0.28) 0.605 (±0.28)* 0.558 (±0.32)* 0.647 (±0.33)* 0.596 (±0.35) 0.392 0.415 0.604
Surprisingly, this comparatively simple idea has not been explored
efore. We believe this may be related to the fact that anomaly de-
ection in medical imaging is in itself an active area of research,
hat has only recently been enriched with the possibilities of deep
10
learning. From a conceptual perspective, the proposed approach im-
plicitly inherits the advantages of anomaly detection models. First of
all, it gains additional supervision without requiring any extra manual
labels. Furthermore, its applicability is not limited to a specific disease,
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Fig. 8. Experiment E: Plots showing the influence on the average Dice when varying the weighting hyperparameter for the anomaly-class (𝑤𝑐 = [0.01, 0.1, 1, 2, 5, 10, 50]).
Results are illustrated on the ‘real-world’ test set for the models (a) ’ANGUS-Net-Multi’, (b) ’ANGUS-Net-6-Multi’, (c) ’ANGUS-DeepLabv3-Multi’, (d) ’ANGUS-AttUnet-Multi’ and
(e) ’ANGUS-TransUNet-Multi’ versus their corresponding baselines. For better readability, the values are plotted at equal intervals on the horizontal axis.
patient cohort or appearance, as by definition the anomaly detection
model is trained only on normal samples, therefore independently of
a particular disease. This last point was previously shown in Seeböck
et al. (2019a) to hold for multiple diseases and anomaly appearances.
Our proposed approach exhibits similar properties, with performance
improvements across different datasets, diseases, and lesion targets
(Section 4, experiment A, C and F ).

Moreover, specific (supervised) lesion segmentation and anomaly
detection models complement each other well from a conceptual point
of view. While anomaly detection methods seek to detect all deviations
from normal appearance by learning from normal samples only, (super-
vised) lesion segmentation approaches aim to detect a particular patho-
logical structure which typically depicts only a very specific anomaly
subgroup. This conceptual difference is also reflected in experimental
results when using anomaly detection models as unsupervised baselines
for the task of segmenting specific lesions, achieving a relatively high
recall and low precision at the same time.

The proposed approach is also generic in the sense that it does
not rely on a specific network architecture, which allows its usage
in other more complex architectures as well as in combination with
other sophisticated techniques that aim at improving segmentation
performances (Section 1.1). This assumption is supported by the results
of experiment A, which shows robustness when changing the structure
of the underlying backbone. This holds not only in the single target con-
text but also in a multi-class setting for the simultaneous segmentation
of multiple lesions (Section 4, experiment C).

Furthermore, the results of experiment B indicate that the proposed
method is more data efficient. As visualized in Fig. 6, a larger number
of training samples does not necessarily lead to better generalization
performance. We hypothesize that this might be caused by variations
in the overall class balancing when de- or increasing the number
of images. This results in changes of the general distribution of the
samples in the training set, making it more or less similar to the class
distribution in the test set.

In some specific experimental combinations, the Dice could not be
improved by the proposed method. However, a higher Dice for the
proposed method was observed in 132 out of 143 combinations across
all experiments ‘A’, ‘B’, ‘C’ and ‘D’ (Section 4).
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Despite the clear performance improvements in our experiments, we
noticed that both the baseline and our model reported low Dice values
for IRC, HRF and pseudodrusen in the real-world dataset. This might
be due to multiple factors: the heterogeneity of the real world data, the
difficulty of manually annotating lesions, and the difficulty of achieving
a high Dice when the lesion is small (Reinke et al., 2021). Nevertheless,
the lesion-wise evaluation metrics for the proposed approach are at the
same time high, even for these targets. This indicates that the low Dice
is mainly due to delineation and not localization errors of the lesions.

The clear performance improvements regarding the lesion-wise
evaluation metrics also imply that the proposed approach greatly
reduces the amount of lesion regions that are either missed or falsely
detected by the baseline model. Since the LD-Re𝑑 and LD-Pr𝑑 curves
of the ANGUS-Net are closer to each other compared to the baseline,
we hypothesize that the proposed approach leads to models which are
better balanced in terms of weighting false positives and false negatives.

Even though these numbers cannot be directly compared, our model
achieved higher Dice values than the mean of the competing methods
reported by Bogunović et al. (2019) in the RETOUCH challenge Spec-
tralis test set. Furthermore, the best ANGUS based models achieved
numbers close to or better than the reported mean inter-observer
Dice (IRC: 0.74, SRF: 0.66, PED: 0.80) in absolute values. To increase
the reproducibility of our work, our predicted anomaly maps on the
RETOUCH challenge dataset will be made available online by the time
of publication.1

Regarding computational effort, our approach adds limited over-
head, as it only requires applying the anomaly detection model once
on the training dataset, to produce the weak anomaly labels for train-
ing. We also did not notice any systematic effect on the convergence
behavior during training. Finally, the inference time is the same for
both the baseline and the proposed segmentation model.

One potential limitation is the situation in which a complete manual
annotation of target structures is available, as in this case the pixel-wise
binary map for the anomaly predictions (1AN, Section 2.1) could be
mostly empty. Even though in this theoretical scenario the proposed
method may be of limited value, this is not a realistic situation. In

1 https://github.com/tbd

https://github.com/tbd
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Fig. 9. Experiment F.1: Plots illustrating the performance in terms of Dice when directly applying the trained models on the external publicly available dataset (Kermany et al.,
2018) ’OCT-Kermany’. (a) IRC, (b) SRF and (c) PED segmentation results. For each target, the mean performance is additionally visualized on the right hand side.
particular, it is extremely costly to obtain a comprehensive detailed
pixel-wise annotation covering every potential lesion type separately,
particularly in the medical domain. Furthermore, in many clinical
scenarios reaching a complete definition of all lesion types is not
possible, as not all factors, patterns or lesion types relevant for a specific
disease are known. Moreover, the anomaly detection model segments
anomalous areas that do not necessarily correspond to a specific lesion
type, meaning that even a complete annotation of all potential lesions
may not have a total overlap with the anomalous area. For instance,
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this could be an anatomical alteration produced by the presence of a
lesion nearby, such as a general swelling of the retina caused by IRC
(Fig. 3, top row). Moreover, the results indicate a very weak association
between a potential performance decrease related to a smaller size of
the ’residual anomalous area’ (experiment G).

The need to explicitly choose the weighting hyperparameter 𝑤𝑐 is
another potential drawback. At the same time, it may be beneficial to
be able to explicitly control the influence of the anomaly context on the
training loss. We also observed that even though our proposed method
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Fig. 10. Experiment F.2: Barplots of cross-disease evaluations. Results of U-Net/ANGUS-Net models trained on the ’RETOUCH challenge AMD’ training set and evaluated on the
’RETOUCH challenge RVO’ test set are illustrated in (a). Results of U-Net/ANGUS-Net models trained on the ’RETOUCH challenge RVO’ training set and evaluated on the ’RETOUCH
challenge AMD’ test are illustrated in (b).
improved the performance for the multi-class models in experiment C
compared to the baselines, the average absolute performance in terms
of Dice was lower compared to the proposed single target models, for
all backbones. We hypothesize that this difference in performance may
stem from increased complexity of the multi-class problem.

Another limitation of this work is that we used the anomaly maps
of only a single anomaly detection model for training the segmenta-
tion models in our experiments (WeakAnD (Seeböck et al., 2019a)).
However, to the best of our knowledge, the utilized anomaly detection
model is state-of-the-art in pixel-wise anomaly detection in OCT. In
the Supplement, we also demonstrate superior performance in terms
of anomaly detection of the utilized WeakAnD model compared to
AnoDDPM, a recently published diffusion based anomaly detection
method. This further strengthens the choice of the anomaly detection
method used in our experiments. At the same time, we believe that the
underlying simplicity of our approach allows to seamlessly exchange
the underlying anomaly detection model and backbone architecture,
and even applying it to other medical imaging domains. Here, we
conjecture that a more accurate anomaly mask is beneficial for the
performance of the final lesion segmentation model. However, this
hypothesis needs to be investigated in future work.

Notice that adding the anomalous area as an additional weak label
is significantly different from supervision with dilated lesion masks.
The anomaly detection model identifies abnormal areas not always
linked to a specific lesion but possibly associated with anatomical
changes caused by a lesion. However, this abnormal alteration does not
necessarily correspond to a consistently dilated area around the lesion,
as reflected in all qualitative examples of this work.

6. Conclusion

In this paper, we proposed an anomaly guided approach for im-
proving lesion segmentation in retinal OCT scans. Our method uses
anomalies as an auxiliary task to provide additional weak supervision.
By adding the semantic context, the approach achieved performance
improvements in four different datasets and demonstrated robustness in
terms of the underlying structure of the backbone, number of training
samples and target classes, generalization to external test sets and
unseen diseases as well as an improved lesion-wise detection. The
proposed approach is generic enough to be combined with any un-
derlying architecture or other techniques to enhance the segmentation
performance and to be extended to other imaging domains, diseases
or anatomical structures in future work. We believe that the simplicity
of our method contributes to its efficacy and potential impact across
diverse applications, as it is conceptually easy to extrapolate to other
use case scenarios, can be easily combined with other techniques,
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is efficient in terms of computational resources and can serve as a
foundation for further developments.

In this context, further efforts should not only seek to combine
our proposed approach with other techniques, but also focus on other
strategies to utilize anomaly detection for performance improvement,
including the use of anomaly maps as pre-training task or as direct
attention-mechanism. This could support clinicians in patient man-
agement, including early diagnosis, tracking disease progression and
making treatment decisions.
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