

José Ignacio Orlando^{1,2,3} and Matthew Blaschko^{1,4}

¹ Équipe Galen, INRIA Saclay, Île-de-France, France
 ² Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina
 ³ Pladema Institute, UNCPBA, Argentina
 ⁴ Center for Learning and Visual Computing, École Centrale Paris, France

INTRODUCTION

motivation

Retinal image analysis is greatly aided by blood vessel segmentation as the vessel structure may be considered both a key source of signal, e.g. in the diagnosis of diabetic retinopahy, or a nuisance, e.g. in the analysis of pigment epithelium or choroid related abnormalities.

challenges

our contribution

We present a novel method for blood vessel segmentation in fundus images based on a discriminatively trained,

fully connected conditional random field (CRF) [1].

energy definition

The **segmentation task** is posed as an **energy** minimization problem in a fully connected CRF:

$$E(\mathbf{y}) = \sum_{i} \psi_{u}(y_{i}, \mathbf{x}_{i}) + \sum_{i < j} \psi_{p}(y_{i}, y_{j}, \mathbf{f}_{i}, \mathbf{f}_{j})$$

unary potentials Log-likelihood over

the label assignment: $\psi_u(y_i, \mathbf{x}_i) = -\langle \mathbf{w}_{u_{y_i}}, \mathbf{x}_i \rangle - \beta_{y_i}$

pairwise potentials

Similar distribution but considering only the interactions between pixels features and their labels

estimation of scale values

Scale values of the pairwise kernels are estimated following [2], by taking the median of the distance over random sampled pairs of pixels.

LEARNING FULLY CONNECTED CRF'S PARAMETERS USING SOSVM

structured output sym We optimize this expression using [3]. feature map

$$\min_{\mathbf{w},\xi \ge 0} \frac{1}{2} ||\mathbf{w}||^2 + C\xi$$
s.t. $\forall (\bar{y}^{(1)}, ..., \bar{y}^{(n)}) : \sum_{i=1}^{n} \langle \mathbf{w}, \varphi(s^{(i)}, y^{(i)}) - \varphi(s^{(i)}, \bar{y}^{(i)}) \rangle \ge \sum_{i=1}^{n} \Delta(y^{(i)}, \bar{y}^{(i)}) - \xi$

training set

Weights are learned from the training set: $S = \{\left(s^{(1)}, y^{(1)}\right), ..., \left(s^{(n)}, y^{(n)}\right)\}$ unary feature vector, bias constant and pairwise feature vector $s^{(i)}=\{x^{(i)},B,f^{(i)}\} \qquad y^{(i)}\in\mathcal{L}=\{-1,+1\} \quad \text{manual annotation}$

loss function Hamming loss $\varphi(s, y) = \left(\sum_{k} \varphi_{u}(\mathbf{x}_{k}, y_{k}), \sum_{k} \varphi_{\beta}(B, y_{k}), \sum_{k} \sum_{j < k} \varphi_{p}\left(y_{k}, y_{j}, \mathbf{f}_{k}, \mathbf{f}_{j}\right)\right)$ $\Delta(y,\bar{y}) = \sum [y_i \neq \bar{y}_i]$ $\varphi_{u}(\mathbf{x}_{k}, y_{k}) = \mathbf{x}_{k} \otimes \varphi_{y}(y_{k}) \qquad \varphi_{\beta}(B, y_{i}) = B\varphi_{y}(y_{i}) \qquad \forall m : \left[\varphi_{p}\left(y_{k}, y_{j}, \mathbf{f}_{k}, \mathbf{f}_{j}\right)\right]_{m} = \mu(y_{i}, y_{j})k^{(m)}(f_{i}^{(m)}, f_{j}^{(m)})$ pairwise term

weight vector $\mathbf{w}=(\mathbf{w}_u,\mathbf{w}_\beta,\mathbf{w}_p)$ weights for unary, bias and pairwise terms, respectively

FEATURES

preprocessing

Images are **preprocessed** to **avoid** false detections in the border of the FOV and to reduce the effect of biased illumination.

unary features

line detectors [4]

2d multiscale gabor wavelets [5]

pairwise feature

vessel enhancement inspired on [7]

feature selection

Best configuration of features is found by minimizing the distance to a second human observer performance, using a validation set.

VALIDATION AND RESULTS

qualitative evaluation

Experiments and evaluation are performed on DRIVE dataset

quantitative evaluation

evaluation metrics Our results are compared with the state-of-the-art in terms of sensitivity and specificity $Se = \frac{1}{TP + FN}$

Our method is statistically tied with the performance of a second expert annotator, and achieves a much higher sensitivity than all other current segmentation systems.

- Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS. (2012)
- Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural SVMs. Machine Learning 77(1) (2009) 27–59

Schölkopf, B.: Support Vector Learning. PhD thesis, Oldenbourg Verlag, Munich (1997)

- Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE T-MI 26(10) (2007) 1357–1365
- Soares, J.V., et al.: Retinal vessel segmentation using the 2-d Gabor wavelet and supervised classification. IEEE T-MI 25(9) (2006)
- Sinthanayothin, C., et al.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images.

 British Journal of Ophthalmology 83(8) (1999) 902–910
- Saleh, M.D., Eswaran, C.: An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding.

 Computer Methods in Biomechanics and Biomedical Engineering 15(5) (2012)

REFERENCES

