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motivation

Retinal image analysis is greatly aided by blood vessel
segmentation as the vessel structure may be considered
both a key source of signal, e.g. in the diagnosis of diabetic
retinopahy, or a nuisance, e.g. in the analysis of pigment
epithelium or choroid related abnormalities.
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our contribution

We present a novel method for blood vessel segmentation
in fundus images based on a discriminatively trained,
fully connected conditional random field (CRF) [1].

energy definition

The segmentation task is posed as an energy
minimization problem in a fully connected CRF:
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Similar distribution but considering
only the interactions between pixels
features and their labels
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estimation of scale values

Scale values of the pairwise kernels are
estimated following [2], by taking the median
of the distance over random sampled pairs
of pixels.
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Weights are learned from the training set: S5 = {(5(1), y(l)) ey (s<”), y<”))}
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preprocessing

Images are preprocessed to avoid
false detections in the border of the
FOV and to reduce the effect of

biased illumination.
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feature selection

Best configuration of features is found
by minimizing the distance

to a second human observer
performance, using a validation set.

For any further information and implementation details:
Project webpage: http.//pages.saclay.inria.fr/matthew.blaschko/projects/retina/
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Our method is statistically tied with the performance
of a second expert annotator, and achieves a much
higher sensitivity than all other current segmentation
systems.

weight vector w = (wy, wg, wp)

2nd human observer
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weights for unary, bias and
pairwise terms, respectively

Experiments and evaluation are performed on DRIVE dataset

our result

Krahenbihl, P., Koltun, V.: Efficient inference in fully connected CRFs with
1 Gaussian edge potentials. In: NIPS. (2012)

Schélkopf, B.: Support Vector Learning. PhD thesis, Oldenbourg Verlag,
2 Munich (1997)

[ ] Joachims, T, Finley, T., Yu, C.N.J.: Cutting-plane training of structural SVMs.
3 Machine Learning 77(1) (2009) 27-59

Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators
4 and support vector classification. IEEE T-Ml 26(10) (2007) 1357-1365

[ Soares, J.V,, et al.: Retinal vessel segmentation using the 2-d Gabor wavelet
5 and supervised classification. IEEE T-MI 25(9) (2006)

retinal blood vessels from digital colour fundus images.

[ 6] Sinthanayothin, C,, et al.: Automated localisation of the optic disc, fovea, and
British Journal of Ophthalmology 83(8) (1999) 902-910

Saleh, M.D., Eswaran, C.: An efficient algorithm for retinal blood vessel
[ ] segmentation using h-maxima transform and multilevel thresholding.
7 Computer Methods in Biomechanics and Biomedical Engineering 15(5) (2012)

517-525

BOSTON




