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Abstract. Several ophthalmological and cardiovascular diseases—such as diabetic and hypertensive
retinopathies, choroidal neovascularization, arteriosclerosis, among others—can be diagnosed by analysing
the structure of the retinal vasculature. Such analysis require to count with precise segmentation of blood
vessels, being manual delineation tedious and time-consuming. Various algorithms for automatic blood
vessel segmentation have been proposed in the last years, most based on supervised methods. These
approaches deal with the automatic detection of retinal blood vessel features and non-vessel features by
learning on the basis of a training set of manually segmented reference images. Performance of such
methods is usually determined by the features capability of discriminating vessels from other anatomi-
cal or pathological structures. In this work, we present a review of different preprocessing and feature
extraction techniques for blood vessel segmentation in retinal images. Using a linear Support Vector Ma-
chine as the segmentation approach, we study the behaviour of several state-of-the-art preprocessing and
feature extraction techniques in the detection of retinal vasculature, summarizing their computation and
results. Finally, we propose a standard methodology to evaluate and compare blood vessel segmentation
algorithms. A publicly available data set of fundus images is employed for evaluation, and our results
are compared against other state-of-the-art approaches.
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1 INTRODUCTION

Optical fundus images—also known as retinal images or retinographies—are projective color
photographs of the inner surface of the human eye (Figure 1 (a)). Such images allow ophthal-
mologists and other physicians to directly observe the retina and their internal parts, including
the vascular tree, the optic disc and the fovea (Abramoff et al., 2010). Quantitative measure-
ments of variations in the retinal vasculature are frequently used in diagnosing several ophthal-
mological and vascular diseases, including diabetic retinopathy, hypertension, occlusion and
glaucoma (Fraz et al., 2012a). Vessel occlusion, for instance, makes vessels longer; hyperten-
sion reduces arteries, while diabetes creates new blood vessels (Fathi and Naghsh-Nilchi, 2013).
To compute morphological features—such as length, width, tortuosity or branching patterns and
angles—precise segmentations are needed. However, manual delineation is an intensive and time
consuming labour, specially in screening programs where large databases of retinal images need
to be analysed (Abramoff et al., 2010). Thus, automatic blood vessel segmentation in retinal
images is extremely valuable.

Several works have been introduced in the last years to solve this problem; yet, none of the
available methods have been assumed as a standard by the medical community due to their lack
of precision (Abramoff et al., 2010). These methods have to detect both narrow and wide ves-
sels in the presence of illumination artifacts and/or pathological structures, such as red-lesions,
cotton wool spots or exudates. In general, these segmentation methods can be classified into
two categories: supervised and unsupervised. Supervised methods require a set of labeled sam-
ples and their features to learn a model—usually a classifier—which is then applied over new and
non-annotated images to obtain the final segmentation. Most of the effort in supervised seg-
mentation involves finding new features for training, or better classifiers to perform the pixel
classification task (Orlando and Blaschko, 2014). For instance, Marin et al. (2011) propose a
supervised method based on a combination of gray-level and moment invariants-based features
with neural networks. Lupascu et al. (2010) utilize an AdaBoost classifier trained with sev-
eral state-of-the-art features for blood vessel segmentation. The work by Osareh and Shadgar
(2009), on the contrary, employs Gabor filters to train a generative Gaussian mixture model.
Unsupervised methods are based on models which are able to adjust themselves to obtain the
segmentation. This type of methods involve systems based on thresholding (Chaudhuri et al.,
1989), region-oriented approaches (Martinez-Perez et al., 2007), clustering techniques (Salem
et al., 2007) or morphological operators Zana and Klein (2001), among others.

Support Vector Machines (SVMs) are supervised learning models widely utilized in pattern
recognition (Abe, 2010). Given a set of training samples, each one identified as belonging to
one of two classes, a SVM training algorithm finds a model that assigns new examples into one
class or the other. Samples in the training set are represented as points in a multidimensional
feature space mapped so that the examples of the separate classes are divided by a clear gap
which is as wide as possible. New examples are mapped into the same space and predicted to
belong to a class based on which side of the gap they fall on (Hastie et al., 2009). This definition
exactly matches the problem of blood vessel segmentation, where a pixel has to be classified
as part of a vessel or not according to its features. Several authors have considered SVMs for
retinal vasculature segmentation, introducing novel features to train the classifier. Ricci and
Perfetti (2007) propose to combine line detectors and linear SVMs. Osareh and Shadgar (2009)
prove that SVMs trained with Gabor filters responses outperforms generative Gaussian mixture
models. Recently, a more sophisticated version of SVMs, namely structured SVM, have been
used by Orlando and Blaschko (2014) to learn fully-connected conditional random fields for
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Figure 1: RGB color bands of a retinal image. (a) Original color image. (b) Green, (c) red and (d) blue bands.

retinal blood vessels segmentation.

The performance of SVMs for vessel segmentation, like in other supervised methods, strongly
depends on the ability of the selected features to distinguish vessels from non-vessel structures
(Becker et al., 2013). In this paper, we quantitatively review the current best practices in pre-
processing and feature extraction techniques for supervised blood vessel segmentation in retinal
images. Using a publicly available data set of fundus photographs, we analyse different com-
binations of features and preprocessing methods to study their ability to train a linear SVM.
We also propose to consider different vessel-enhancement techniques utilized in other existing
unsupervised methods as features to train the SVM classifier. Feature selection using a forward
selection approach is performed to find the best combination of features. Results prove that by
preprocessing the image with different techniques according to the feature to be extracted it is
possible to improve the final segmentations. We also show that our results outperform SVMs
based on features extracted from non-preprocessed images. Finally, we demonstrate that our
approach achieve results comparable to other state-of-the-art methods. An evaluation strategy
adapted to the characteristics of this segmentation problem is additionally proposed to standard-
ize the way this methods are compared.

The remainder of this paper is organized as follows. In Section 2 we review some of the
most utilized state-of-the-art features, including details about their implementations. Section 3
describes some of the existing preprocessing techniques to reduce their influence. Details about
SVMs are analyzed in Section 4. Section 5 summarizes our experiments and the results we
obtained, compared with other state-of-the-art works. Finally, Section 6 concludes the paper.

2 FEATURES FOR BLOOD VESSEL SEGMENTATION

Several features have been introduced for blood vessel segmentation in retinal images in the
last years. In general, all of them are extracted from the green channel of the original color
image, since it exhibits the best vessel/background contrast while the red and blue ones tend
to be very noisy (Figure 1). Current approaches can be classified according to the information
they utilize to characterize blood vessels in the following categories: based on image intensities
(Chaudhuri et al., 1989; Sinthanayothin et al., 1999; Marin et al., 2011), ridge detectors based
on second-order derivatives (Frangi et al., 1998; Martinez-Perez et al., 2007; Staal et al., 2004),
line detectors (Ricci and Perfetti, 2007; Nguyen et al., 2012), wavelets (Soares et al., 2006) and
features based on morphological operations (Zana and Klein, 2001; Marin et al., 2011).

In the following subsections we describe all the features analysed in this work. Although
more complex features have been also proposed in the state-of-the-art, in this paper we summa-
rize the most widely applied for supervised segmentation (Fraz et al., 2012a).
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2.1 Intensity based features

Intensity-based features (Figure 2) are based on the application of different filters to enhance
blood vessels. Those filters can be typical from the image processing domain, such as mean or
standard deviation filters, or can be designed according to local properties of the vessels, as in
the case of matched filter responses.

Matched filter responses (F1.1) were introduced by Chaudhuri et al. (1989), based on the
idea that vessel cross sectional profiles traditionally look like an inverse Gaussian. Since ves-
sels may be considered as piecewise linear segments, matching a number of cross section (of
identical profile) along its length simultaneously result in a vessel enhanced image that can be
utilized as a feature. Such a kernel may be mathematically expressed as:

2 L
K(z,y) = —exp (—%‘2) yl =35 (1)

where L is the length of the segment for which the vessel is assumed to have a fixed orientation,
and o is the standard deviation of the Gaussian kernel. Image is convolved applying K at dif-
ferent orientations (here, angles from 0° to 165° with a step of 15°), and the maximum response
over orientations is taken as a feature. By changing the value of o it is possible to capture
responses of different width vessels. In our experiments, we fix L = 9 and % = {1,2,4,8}.
Responses at each scale are considered as individual features.

Sinthanayothin et al. (1999) propose a preprocessing technique that we suggest to include as
a feature, named Sinthanayothin ef al. feature (F1.2). Authors work with an intensity-hue-
saturation representation of the original RGB image, but we prefer to use the green band of the
image instead because of its contrast. The feature consists on a vessel enhanced image obtained
by applying the locally adaptive transformation:
—1

mean {/} — [

(s,t)ENﬁ?

std {I}

(s,t)Efo;

I'(i,j) = | 1 +exp (2)

Additionally intensity-based features were introduced by Marin et al. (2011). They are ob-
tained after applying a combination of morphological and filtering operations. First, morpho-
logical opening using a three-pixel diameter disc with 8-connectivity is applied to the green
band of the image to remove the brighter strip in the center of some vessels, resulting in a new
image [,. Afterwards, a mean filter using square windows of side 3 is applied to remove oc-
casional salt&pepper noise. Further noise is smoothed with an additional filtering based on a
Gaussian filter with 9 x 9 neighbourhoods, mean ;i = 0 and variance 0? = 1.8%2. The back-
ground of the image I, is then homogenized by subtracting a background estimated from the
noise smoothed image using a 69 x 69 mean filter. Intensities of the resulting image—namely
Isc by Marin et al. (2011)—are then linearly mapped in the interval [0, 255] to cover the entire
range. Finally, an homogenized image [} is obtained by applying the following transformation:

0 if g<0
Iy =< 255 if g > 255 (3)
g otherwise

where g = Isc + 128 — mode(Is¢).

Copyright © 2014 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXXIII, pags. 2729-2743 (2014) 2733

0 )

Figure 2: Intensity based features. (a) Green band of a retinal image. (b-e) Matched filter responses (F1.1) over

scales 02 = {1,2,3,4}, (f) Sinthanayothin et al. (F1.2), (g-k) Marin et al. intensity based features (F1.3), (k)
Marin et al. homogenized image (F1.4) and (1) Marin er al. enhanced image (F1.5).

Five features, named Marin ef al. intensity based features (F1.3), are extracted from I:

fl(,luj) = [H<Zaj> - (s,gleill\lfﬁj{[H<S’t)}’ f2(Z7j) = (s,?)leal\)é’yy{IH<S’t)} - IH(Zh]) (4)

f3(i,5) = Iu(i,j) — mean {Iy(s,t)}, fa(i,j) = std {Iu(s, 1)}

(s)ENY; (s;)EN;

We consider /5 as an additional feature, called Marin ef al. homogenized image (F1.4).
Our last intensity-based feature is the vessel enhanced image [y g, obtained by applying a top-
hat transformation with a disc of eight pixels of diameter over [y. This image is utilized in
(Marin et al., 2011) to obtain moment invariant features. However, we suggest to include them

as a feature since it allows to distinguish the vessels properly. We name it Marin ef al. en-
hanced image (F1.5).

2.2 Ridge detectors based on second order derivatives

Ridge detectors based on second order derivatives are utilized as features since blood vessels
appear as ridge-like structures in the images (Figure 3) (Martinez-Perez et al., 2007). Following
this prior, we can identify vessels by looking for pixels where the intensity image has a local
maximum in the direction for which the gradient of the image undergoes the largest change.
First, images are convolved with Gaussian filters with different values of o in order to capture
vessels at different scales. Afterwards, information about second order derivative of the image is
derived from the Hessian matrix, which is symmetrical with real eigenvalues and orthogonal and
rotation invariant eigenvectors. The eigenvalues A\; and Ao, with || > |\s|, measure convexity
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and concavity in the corresponding eigendirections, respectively (Martinez-Perez et al., 2007).
Mathematical operations between eigenvalues are usually employed as features.

Frangi et al. (1998) introduce a popular feature for blood vessel enhancement in 2D and 3D
images based on second order derivatives. First, image at different scales o; is obtained. A
ridgeness score R = A1 /s is computed, and this value is combined with the Frobenius norm
of the Hessian, S, which measures overall strength, into a single vesselness measure, given by
the following expression:

0 Ay >0
Vo = exp (—%%) (1 — exp (—%)) otherwise )

where § = 0.5 and c is equal to half of the maximum Frobenius norm of the Hessian. This
vesselness measure is applied over each scale of the image, and the maximum over scales is
utilized to characterize retinal vessels. We also include two additional features, the scale where
V) 1s maximum and the angle of the minor eigenvector, resulting in a three-dimensional feature
named Frangi ef al. vesselness measure (F2.1). In our experiments, we consider values of
o=11,2,3}.

In (Martinez-Perez et al., 2007), authors propose to use the value of A\, named Maximum
principal curvature (F2.2), as a feature. This value is evaluated over different scales of the
image in order to capture responses for both narrow and wide vessels. Instead of grouping all
the responses into a single feature, we suggest to utilize each individual response as a feature,
learning the weights to combine them by using the linear SVM.

Another feature based on second order derivatives can be derived from Staal et al. (2004),
where authors propose to describe blood vessels by composing primitives in the form of line
elements extracted from image ridges. In this paper we propose to utilize those line elements as
features. Let I, be the original image [ in a given scale 0. A scalar field p(p, o) can be defined
over [, according to the eigenvalue A\, of the Hessian matrix, by taking -1 for ridges of local
minima (\y > 0), 1 for ridges of local maxima (A < 0) and O elsewhere:

1
p(p,o) = —Esign()\g)]sign(v}a(p +ev) - V) —sign(VI,(p — ev) - V)| (6)

where p is the position vector of a given pixel, V is the gradient vector defined over /, and v
is the eigenvector corresponding to the eigenvalue \,. The parameter € is the spatial accuracy
with which the point-sets are detected, and it is set in 1. Since the extraction of this feature
1s computationally expensive, we only compute it using a single scale ¢ = 1.5. We name this
feature Staal ef al. ridge-line elements (F2.3).

2.3 Line detectors

Line detectors (Figure 4) are based on the prior that blood vessels appear as elongated struc-
tures in the image. This type of features is obtained by evaluating the average intensity along
lines passing through the target pixel at different orientations. The original idea was introduced
in (Zwiggelaar et al., 2004) for the detection of linear structures in mammographic images,
although it is modified by Ricci and Perfetti (2007) in order to fit with the retinal vessel seg-
mentation problem. By taking the inverted green channel of the original image, the average
intensity is evaluated along lines of fixed length [ = 15 passing through each target pixel (i, )
at different orientations (angles from 0° to 165° with a step of 15°). The line with the largest av-
erage intensity, L(z, 7), is found, and the difference S(7, j) = L(i, j)— N (i, j) is taken as the line
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Figure 3: Ridge detectors based on second order derivatives. (a) Green band of a retinal image. (b-d) Frangi et al.
vesselness measures (F2.1), (e-h) Maximum principal curvature (F1.2) over scales 02 = {1,2,3,4}, (i) Staal ez al.
ridge-line elements (F2.3).

strength of the pixel, where N (i, j) represents the average intensity in the square window, cen-
tered on the pixel, with edge length equal to [. Additionally, a line of three pixels is considered,
centered on the midpoint of the main line and orthogonal to it. Its average intensity, L, (7, j),
is utilized to obtain another strength feature S, (i, j) = L,(i,7) — N(i,7) (Figure X (c)). The
angle of the orthogonal line is approximated with the closest principal angle (0°,45°,90°, 135°).
Both features, jointly with the inverted green band of the image, are proposed as features by the
authors. In this work, we only consider S(i,7) and S,(7, j), and we call it Ricci and Perfetti
line detector (F3.1).

Ricci and Perfetti line detector gives false responses under certain circumstances such as at a
background pixel between two close vessels, at a background pixel at the corner of a crossover
point, or at a background pixel near a strong vessel (Nguyen et al., 2012). To reduce these
wrong detections, Nguyen et al. (2012) propose to compute line responses at varying scales,
combining them linearly with the inverted green channel into a single feature. Instead of taking
S(i,7) = L(i,j) — N(i,7), the new line strength measure is computed by taking S(i,7) =
LYi,5) — N*(i, ), with 1 <[ < s. Parameter [ is the length of the line passing through each
target pixel, and s is the size of the neighbourhood from where the average intensity is obtained.
Since our segmentation method is able to learn by itself the weights to combine each scale of
the feature, we consider each scale as a feature, named Nguyen ef al. line detector (F3.2). The
scales considered in our experiments are from 1 to 15 with a step of 2.

2.4 Wavelets

Wavelets have been extensively explored in the literature for signal and image processing
(Soares et al., 2006). Regarding retinal blood vessels segmentation, wavelets have been applied
to enhance vessels by Soares et al. (2006). We include Soares ef al. Gabor wavelet (F4.1) in
our experiments due to their capability of distinguish both narrow and wide vessels (Figure 5).
By taking the inverted green channel of the retinal image, authors creates feature vectors in-
cluding measurements at different scales taken from the two-dimensional (2-D) Gabor wavelet
transform, also known as Morlet wavelet. Each response is utilized in this work as an individual
feature.
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Figure 4: Line detectors. (a) Inverted green band of a retinal image. (b-c) Ricci and Perfetti line detectors (F3.1),
(d-i) Nguyen et al. line detectors (F3.2).

Figure 5: Wavelets. (a) Inverted green band of a retinal image. (b-e) Soares et al. Gabor wavelet (F4.1).

2.5 Mathematical morphology

Mathematical morphology is also well adapted for vessel-like patterns detection. By finding
the correct combination of operations, it is possible to improve the contrast between vessels and
other structures (Zana and Klein, 2001).

Zana and Klein (2001) introduce an unsupervised algorithm that combines morphological
filters and cross-curvature evaluation to segment vessel-like patterns. We include the image
resulted of those operations as a feature, named Zana and Klein processed image (F5.1) (Fig-
ure 6). First, a top-hat morphological operation is applied over the green band of the image,
using lines of length 9 in a given angle f. Those angles ranges from 0° to 165°, with a step of
15°. The sum of all the top-hat responses is taken since it reduces the small bright noise and
improve the contrast of all linear parts with respect to the original image. Further treatment to
remove noisy responses is performed by applying a Laplacian of Gaussian filter using square
windows of side 7 with ¢ = 7/4. A morphological opening is then applied on the resulting
image using lines of length 9 in the angles mentioned above, and the maximum over angles is
taking. Afterwards, a morphological closing is performed using the same structuring element,
but taking the minimum over angles. Finally, the maximum over angles of an opening operation
is applied again using line elements of length 29.

3 PREPROCESSING TECHNIQUES FOR ARTIFACT REDUCTION

Main problems of features extracted from the green band of fundus images are related to the
lack of contrast between vessels and background, and artifacts introduced by the border of the
FOV (Fraz et al., 2012a). In this section, we study two preprocessing techniques to deal with
those problems.
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Figure 6: Mathematical morphology. (a) Green band of a retinal image. (b) Zana and Klein processed image
(F5.1).

(a)

Figure 7: Preprocessing techniques. (a) Original green band of a retinal image. (b) Estimated background. (c)
Background subtracted image. (d) Border extended image. (e) Background subtracted and border extended image.

[llumination flaws while capturing the image result in images with biased background. This
bias reduce the contrast of vessels in different regions and decrease feature capability of detect-
ing vessels properly (Marin et al., 2011). Several works propose to preprocess images before
extracting features to overcome this difficulties. In general, bias reduction methods are based on
subtracting to the green band of the original image an estimation of the background, obtained by
applying noise filtering with large neighbourhoods. After an extensive, qualitative analysis of
bias reduction methods, in this work we propose to estimate the background using mean filter-
ing with 35 x 35 windows, and considering only internal pixels of the FOV to reduce the effect
of possible bias in borders. Figura 7 (b) and (c) depict examples of the estimated background
and the background subtracted image. As can be observed, this preprocessing technique reduce
the bias and increase the contrast, although introducing high intensities next to the FOV.

Some features analysed in this work require filtering the image. However, filters are influ-
enced by the black points outside the FOV and reduce the contrast of blood vessels, as in the
case of Figura 7 (c). Moreover, other features has a high response in the borders of the FOV, re-
sulting in false detection of the border of the camera’s aperture. Soares et al. (2006) propose an
iterative method to overcome this difficulties which is widely utilized in the state-of-the-art (un
par de casos). The preprocessing algorithm starts with a region of interest (ROI) determined by
the camera’s aperture and iteratively grows this ROI. Each step of the algorithm consists in the
following. First, the set of pixels of the exterior border of the ROl is determined, by taking the
neighbours to pixels inside the FOV, considering four-connectivity. Then, each pixel value of
this set is replaced with the mean value of its neighbours inside the ROI (this time considering
eight-connectivity). Finally, the ROI is expanded by including this altered set of pixels. This
process is repeated until a certain number of iterations. In this work, we repeat this process 30
times, and we consider square neighbourhoods of size 3 to perform the expansion. Figura 7 (d)
shows the result obtained after applying this approach over the original green band of a retinal
image. It can be observed that the border is expanded successfully in the right side of the image,
although it has dark artifacts in the left side due to the biased background.

In this paper we analyse the effect of this two preprocessing techniques over the previously
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mentioned features. We also incorporates a third preprocessing technique, based on the combi-
nation of the bias correction method and the algorithm for border expansion (Figura 7 (e)).

4 SEGMENTATION METHOD

As it was explained in Section 1, our supervised method for features evaluation is a linear
SVM (Hastie et al., 2009). Let S be a set of N training samples (x;,y;), where x; € R? is
the feature vector of a given pixel i and y; € {—1,+1} its corresponding label (in our case,
+1 represents the blood vessel class, and —1 any other non-vessel class). An SVM identi-
fies the optimal separating hyperplane for which the margin of separation between classes in
the d-dimensional feature space is maximized. This is achieved by optimizing the following
expression:

min §||w||2+§:gi 7)
weRd g eR+ 2 —
subject to the linear constraints
y(wix;+b)>1—-¢&,i=1,...N (8)

where w is the weight vector, b is a bias term which is also learned from training data, each ¢;
is a slack variable, and the parameter A > 0 controls the trade-off between the minimization
of classification errors on the training set (0 < A < 1) and the maximization of the margin
A>1).
Once the model is learned, the class of a new point x is given by the sign of the decision
function:
flx) =wix+b ©)

For further details on SVMs, we refer the interested reader to (Hastie et al., 2009).

We base our experiments in VLFeat implementation of the the linear SVM (Vedaldi and
Fulkerson, 2010). Due to the large size of the training set (almost 3 million pixels), traditional
optimization methods such as gradient descent are not feasible in a reasonable computational
time to minimize the objective function. We utilize stochastic gradient descent instead, which
converges faster that traditional gradient descent methods, although finding an approximation
to the minimum (Spall, 2005).

S VALIDATION & RESULTS

We performed all our experiments using the publicly available dataset DRIVE (Niemeijer
et al., 2004). It comprises a total of 40 manually segmented color fundus images, all obtained
from a diabetic retinopathy screening program in the Netherlands. Seven images in the set
contains pathology, namely exudates, hemorrhages and pigment epithelium changes. The im-
ages were acquired using a Canon CR5 non-mydriatic 3-CCD camera with a 45° FOV, stored
in JPEG format, using 8 bits per color plane at 768 x 584 pixels. The FOV of each image is
circular with a diameter of approximately 540 pixels. The set is divided into a training set and a
test set, both containing 20 images. The test set includes two different segmentations per image,
the first one assumed as the gold-standard segmentation and the second one utilized to study the
performance of a second human observer.

Several works in the literature report their results in terms of global accuracy measures such
as accuracy or area under the receiver operating characteristic (ROC) curve. Since vessel seg-
mentation in retinal images corresponds to a typical skewed-class problem—only around 13% of
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image pixels corresponds to blood vessels (Fraz et al., 2012a)—, using these measures to evalu-
ate segmentation is not recommended: due to the small proportion of vessel pixels with respect
to the entire image, big changes in the amount of well-classified pixels will not significantly
affect global metrics; in the contrary, small changes in the amount of well-classified non-vessel
pixels will be reflected in big changes in the performance. Following this prior, we evaluate our
results in terms of specificity (Sp), precision (Pr) and recall (Re, also known as sensitivity)
(Eq. 10), and also in terms of the F1-score (Eq. 11):

TN TP TP

gp— N p._ At AP 10

P=oNsFp T TPyFP YT TPIFN (10)
Pr - Re

Flego.- "1 11

Pr + Re an

where T'P is the number of true positives, 7'V is the amount of true negatives, F'/N is the
number of false negatives and F'P is the amount of false positives. 7P and T'N represent the
number of pixels identified as vessel and non-vessel, respectively, in both the ground truth and
the segmented images. F'N is the amount of pixels classified as non-vessel in the segmentation
but as vessel in the ground truth, while F/'P is the number of pixels classified as vessel in the
segmentation but as non-vessel in the ground truth. Specificity measures the ability of the
algorithm to detect non-vessel pixels, precision indicates the proportion of identified pixels
which are true vessel pixels, and recall the ability to detect vessel pixels. Finally, Fl-score is
a standard measure for skewed-class classification problems, defined as the harmonic mean of
precision and recall.

All the parameters of our method, including A and the combination of features, were selected
following the methodology proposed by Orlando and Blaschko (2014). First, we randomly
partitioned DRIVE training set into two new sets, training* and validation, with 15 and 5 images
each one, respectively. We utilized training* to train the SVM, and the parameters were selected
by optimizing the F1-score over the validation set. Only the final configuration was evaluated
using the test set. This methodology allows to avoid overfitting on the test set.

We first evaluate the performance of each preprocessing technique combined with each indi-
vidual feature. For this purpose, we train the SVM on training*, using a feature extracted from
images preprocessed with a given algorithm, and we evaluate the performance using the valida-
tion set. Values of ) are selected from the set 10°, with i = {—5, —4, ..., 0, ...,4, 5}, according
to the validation set, and looking for the value which optimizes the F1-score measure. Results
are summarized in Table 1. As can be seen, only 2 features (F1.2 and F3.1) are not improved
by preprocessing images first with the proposed approaches. Applying bias reduction improves
the discrimination of blood vessels when using features F2.1, F3.2 and F4.1; extending borders
of the field of view upgrade the performance of features F1.4, F1.5 and F2.2; finally, applying
both techniques together over the input images improve the F1-scores of features F1.1, F1.3 and
F5.1.

In the following experiments, we fix the preprocessing algorithm for each feature according
to previous results, and we apply a forward selection approach to select the best combination
of features according to the validation set. The best configuration we found includes almost all
the features we analysed, except F1.4 y F3.1. Once the model is learned, we evaluate it on the
test set. We also evaluate our method using the same set of features but extracted from images
without any preprocessing. Results obtained are compared to other state-of-the-art methods
in Table 2. After an extensive review of the literature on blood vessel segmentation, we only
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Without Bias Extended Both
Feature . . .
preprocessing reduction border techniques
F1.1 0.5620 0.5614 0.5609 0.5621
F1.2 0.5483 0.5214 0.5462 0.5262
F1.3 0.5864 0.5736 0.5758 0.5917
F1.4 0.5060 0.4999 0.5083 0.5042
F1.5 0.6232 0.6233 0.6293 0.6293
F2.1 0.5874 0.5926 0.5922 0.5838
F2.2 0.4637 0.4608 0.4744 0.4508
F2.3 0.2547 0.2547 0.2547 0.2547
F3.1 0.6497 0.6488 0.6440 0.6497
F3.2 0.6468 0.6640 0.6518 0.6470
F4.1 0.5652 0.5664 0.5659 0.5646
F5.1 0.6423 0.6422 0.6401 0.6429

Table 1: Fl-score values obtained on the validation set using features extracted over images preprocessed with
different techniques. Bold numbers indicates the maximum F1-score value.

include in the comparison those works that report their results in terms of Pr, Re and Sp. As
can be seen, preprocessing images reduces the average values of precision and specificity, but
increasing recall and F1-score values.

Method Pr Re Sp Fl-
score
Espona et al. (2007) - 0.6634 0.9682 -
Espona et al. (2008) - 0.7436 0.9615 -
Fathi and Naghsh-Nilchi (2013) 0.7559 0.7768 0.9759 0.7662
Fraz et al. (2012b) 0.815 0.7152 0.9723 0.7618
Marin et al. (2011) 0.8433 0.7067 0.9801 0.7690
Soares et al. (2006) - 0.7230 0.9762 -
Staal et al. (2004) - 0.7190 0.9770 -
Mendonca and Campilho (2006) - 0.7315 0.9781 -
Wang et al. (2007) - 0.7800 0.9780 -
You et al. (2011) - 0.7410 0.9751 -
Human observer - 0.7761 0.9757 -
Our method without preprocessing 0.8809 0.6321 0.9875 0.7338
Our method with preprocessing 0.8116 0.7189 0.9757 0.7596

Table 2: Comparison of Pr, Re, Sp and F1-score of our method with and without preprocessing, with respect to
the existing blood vessel segmentation algorithm, based on DRIVE data set.

Qualitative results are depicted in Figure 8. In general, the SVM trained with features ex-
tracted from non-preprocessed images result in good segmentations of wide vessels. However,
narrow vessels are almost ignored by the method. Preprocessing the images improves seg-
mentation of wide vessels, filling holes between their borders (Figure 9 (I)). Additionally, this
approach incorporates several pixels of narrow vessels (Figure 9 (II)). Noisy pixels in the bor-
der of the FOV are also included into the segmentation (Figure 9 (III)), although there are not
significant with respect of the large amount of well classified pixels incorporated.
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(a) (b) (c) (d)

Figure 8: Examples of results obtained on the test set. (a) Original image. (b) Our method without preprocessing
the images. (c) Our method preprocessing the images. (d) Ground truth segmentation.

6 CONCLUSIONS

In this paper we have presented an evaluation of different preprocessing and feature extrac-
tion techniques in the context of supervised segmentation of retinal blood vessels in fundus
images. By taking a linear SVM as the segmentation method, we have reviewed the behaviour
of several features when images are preprocessed using two state-of-the-art algorithms. Param-
eters of the method were fixed by considering a validation set of retinal images extracted from
the original training set of DRIVE, a publicly available data set for the evaluation of blood ves-
sel segmentation algorithms. Best combination of features was also selected according to the
validation set, following a forward selection approach. We have showed that performance is
considerably increased in terms of the F1-score when the best preprocessing algorithm is fixed
for each individual feature. We have also demonstrated that applying a preprocessing algorithm
before extracting each feature allows to achieve better results when segmentations are analysed
qualitatively. In particular, this change incorporates a large amount of pixels corresponding to
narrow vessels and filling holes in wide vessels. Finally, results were compared with respect
to other state-of-the-art approaches, showing that this simple method achieves similar quality
values than other available algorithms. Thus, combining our approach with more sophisticated
segmentation techniques could reach better results. The entire feature evaluation methodology
applied in this work could be implemented to fix features for more sophisticated supervised
approaches.
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