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Abstract
Background Intravascular ultrasound (IVUS)provides axial
greyscale images, allowing the assessment of the vessel wall
and the surrounding tissues. Several studies have described
automatic segmentation of the luminal boundary and the
media–adventitia interface by means of different image fea-
tures.
Purpose The aim of the present study is to evaluate the
capability of some of the most relevant state-of-the-art image
features for segmenting IVUS images. The study is focused
on Volcano 20MHz frames not containing plaque or contain-
ing fibrotic plaques, and, in principle, it could not be applied
to frames containing shadows, calcified plaques, bifurcations
and side vessels.
Methods Several image filters, textural descriptors, edge
detectors, noise and spatialmeasureswere taken into account.
The assessment is based on classification techniques previ-
ously used for IVUS segmentation, assigning to each pixel
a continuous likelihood value obtained using support vector
machines (SVMs). To retrieve relevant features, sequential
feature selection was performed guided by the area under the
precision–recall curve (AUC-PR).
Results Subsets of relevant image features for lumen, plaque
and surrounding tissues characterization were obtained, and
SVMs trained with these features were able to accurately
identify those regions. The experimental results were eval-
uated with respect to ground truth segmentations from a
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publicly available dataset, reaching values of AUC-PR up
to 0.97 and Jaccard index close to 0.85.
Conclusion Noise-reduction filters and Haralick’s textural
features denoted their relevance to identify lumen and back-
ground. Laws’ textural features, local binary patterns, Gabor
filters and edge detectors had less relevance in the selection
process.

Keywords IVUS · Vessel wall · Segmentation · Feature
selection · SVM

Introduction

Cardiovascular disease is one of the leading causes of hospi-
talization and death in the Occidental world. The atheroscle-
rotic plaque interferes with the flow of blood modifying
the mechanical characteristics of the vessel wall, inducing
positive remodelling, and increasing the risk of thrombi or
intimal hyperplasia [11]. Since angiography images capture
only the lumen of the vessel, intravascular ultrasound (IVUS)
has emerged as a valuable support study. IVUS is an imag-
ing technique based on the combination of a catheter and
an ultrasound transducer which captures axial images, in a
way that allows the visualization of the vessel wall tissue and
plaque composition. A variety of transducer technologies can
be found, resulting in studies with different spatial resolution
[22]. Typically, the frame rate is 25–30 fps and the catheter
is pulled back at 0.5–1mm/s, providing a large amount of
information.

Considering the large number of images resulting from
an IVUS study, automatic segmentation of the vessel wall is
relevant to support diagnosis and interventional procedures.
State-of-the-art methods can be classified into two main cat-
egories, being based on either image series [15,20,26] or
a single slide [17,29,30]. Both fully and semi-automatic
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strategies can be found in each of these groups. Developing
methods for vessel wall segmentation and plaque assessment
in IVUS images is challenging due to the presence of speckle
noise, artefacts and different imaging characteristics such
as the variety of resolutions. Each of the existing solutions
focuses on specific image features to capture appropriate
information, and some of them are recurrently considered
by different authors [16]. Noise-reduction filters such as
nonlinear filtering [26,30] and anisotropic diffusion [12,17]
were previously applied to IVUS images for lumen–intima
and media–adventitia segmentation. Textural analysis is fre-
quently used for plaque characterization [6,11] and also to
differentiate arterial tissues [20,25].

The aim of this paper is to assess the efficiency of dif-
ferent state-of-the-art image features for lumen, plaque and
surrounding tissues characterization. The segmentation tech-
nique used for guiding the feature selection process is not
novel, and it is inspired by [12,20,25]. The studywas focused
on 20MHz Volcano frames that do not contain plaque or
that contain fibrotic plaques. In principle, the conclusions
achieved in this work could not be extrapolated directly to
frames containing shadows, calcified plaques, bifurcations
and/or side vessels. However, the feature selection process
we used here is general enough to be applied in other kind
of images. This processing step might be used, in part or as
a whole, to finally segment the lumen–intima and media–
adventitia interfaces. During the feature selection processes,
the support vectormachine (SVM)methodwas used to assign
the pixels likelihood of belonging to an arterial region, and
the precision–recall curvewas generated to evaluate the capa-
bility of a feature set to discriminate arterial regions.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the dataset of IVUS images used in the
experiments. Section 3 summarizes the strategy for feature
extraction and selection, and the classifier we used. Section 4
presents our results, while Sect. 5 includes a discussion on
them. Finally, Sect. 6 concludes the paper.

Materials

Our experiments were carried out using the publicly avail-
able dataset of IVUS images provided in [4]. This dataset
comprises 435 images, 384 × 384 sized, acquired using
Si5 imaging system (Volcano Corporation, California, USA)
equipped with a 20MHz Eagle Eye catheter (Fig. 1a).
Manual annotations of the luminal boundary and the media–
adventitia interface are available for each image. In this study,
a subset S of 149 images,without artefacts, shadows, bifurca-
tions or side vessels, was selected. For the proper assessment
of the learning algorithm, the set S was separated into a
training–validation set, containing 107 images from seven
studies, and a test set, containing 42 images from three stud-

Fig. 1 a Original IVUS image. b Regions of interest: lumen,
plaque/vessel wall and Background. c Lumen/no lumen classes. d Back-
ground/no background classes

ies. For the model adjustment step, the training–validation
set was split using fivefold cross-validation to prevent over-
fitting [14]. Each pixel of the image was labelled using the
annotations of the luminal boundary or lumen–intima (LI)
and media–adventitia (MA) interfaces. The pixels within LI
were labelled as Lumen, and the pixels outside MA were
labelled as Background.

Methods

The problem of identifying the arterial wall was modelled
as two different characterization problems (Fig. 1b). First,
different features were evaluated to distinguish between
lumen/no lumen, so that the lumen–intima interface (Fig. 1c)
can be estimated as the border between those two regions.
A separate feature set was retrieved to distinguish between
background/no background, so the media–adventitia inter-
face (Fig. 1d) can be similarly assessed by taking the frontier
between these other regions.

Preprocessing

IVUS images were transformed to polar coordinates since it
is useful to eliminate the empty regions corresponding to the
corners and the catheter area, which also facilitates arterial
tissues segmentation, due to their concentric disposition [29,
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30]. As the number of transducers in IVUS systems is usually
a power of two, the sampling was performed using an angle
increment of 0.703◦, to obtain a lateral resolution of 512. The
radial sampling step was 1 pixel, resulting in 512×173 sized
polar images.

Image features

Several approaches were proposed in the literature for fea-
ture extraction in IVUS images, depending on the region of
interest to be segmented or characterized. Two main groups
of features were recognized: image filters, which homoge-
nize and/or enhance certain regions and edges; and textural
features, which characterize information of the heterogene-
ity of the image. The features described in this Section are
summarized in Table 2.

Noise-reduction and edge-enhancement filters

IVUS images are affected by speckle noise, which is char-
acteristic of ultrasound images [19]. Therefore, several
noise-reduction filters were considered in this work. The
image is convolved 25 times using a gaussian filter with
σ = 0.5. The median filter was applied 25 times using 7× 7
windows. This size was selected due to its good behaviour
for window-based filters [19,33]. The anisotropic diffusion
[24] was performed 6000 times with two different values of
the diffusion constant K : K = 0.013 homogenizes lumen
preserving LI, but it does not reduce noise in plaque or Back-
ground; and K = 0.023, which homogenizes plaque and
Background, preserves MA but smooths LI [19].

A number of specialized filters for speckle noise reduc-
tion have been recently proposed. The detail-preserving
anisotropic diffusion (DPAD) [1] is a despeckling filter based
on the Speckle Reducing Anisotropic Diffusion (SRAD)
[33], which incorporates a model of the noise within the
anisotropic diffusion. For the estimation of the coefficient
of noise variation (Cu), the mode of local coefficients of
variation C was applied on 5 × 5 windows, as the authors
recommend. The step size was set to 0.2 and the filter was
applied 1000 times since those parameters showed good
homogenization of the lumen, the plaque and the Back-
ground.

The maximum averaged intensity is a filter specially
designed for segmenting IVUS images, defined by

Imodified(x, y) = max
i∈[0,y]

1

y − i + 1

y∑

k=i

I (x, k), (1)

where I is the image in polar coordinates. This filter smooths
the lumen, and, at the same time, it enhances the lumen
boundary [30].

Table 1 One-dimensional convolution kernels used for the computa-
tion of Law’s textural features (Level 5)

Name Kernel

Edge (E5) (−1,−2, 0, 2, 1)

Spots (S5) (−1, 0, 2, 0,−1)

Waves (W5) (−1, 2, 0,−2, 1)

Ripples (R5) (1,−4, 6,−4, 1)

Levels (L5) (1, 4, 6, 4, 1)

Textural features

Haralick’s textural descriptors [13,28] are based on grey-
level co-occurrence matrices (GLCMs), and they have been
previously applied for IVUS segmentation [25] and plaque
classification [6,11]. The co-occurrences of the intensities in
the images were extracted from 15 × 15 windows with two
different configurations of distance (d) andorientation angles
between pixels: N–S–E–W with d = 1 and N–S with d = 1
and d = 2. Image intensities were downsampled to 50 grey
levels before computing the GLCMs, to reduce the computa-
tional cost. The calculated measures are the angular second
moment, contrast, variance, inverse difference moment and
entropy [13].

Laws’ textural features are based on convolving the image
with 5 × 5 kernels. These matrices are obtained by taking
the outer product of all the possible combinations of five
predefined one-dimensional convolution kernels (Table 1).
After convolving the image with each matrix, 25 measures
of texture energy were obtained by assigning to each pixel
the sum of the absolute values in a 5 × 5 window [20].

Local binary patterns (LBP) are used to detect texture
patterns in a circular neighbourhood. The LBP rotational
invariant (LBPri) [23] was used with R = [1, 2, 3] and the
corresponding neighbourhood of P = [8, 16, 24] [6].

2D Gabor filters are useful not only for detecting direc-
tional borders but also for texture analysis [5]. 16 Gabor
kernels were considered, varying the standard deviation σ

and the 2D frequencies (Φ, F): σx = σy = [12.7205,
6.3602, 3.1801, 1.5901], withΦ = [0◦, 45◦, 90◦, 135◦], and
the corresponding F = [0.0442, 0.0884, 0.1768, 0.3536]
[6]. The IVUS polar images were downsampled to a reso-
lution of 256 × 256 pixels before computing the LBP and
the Gabor features. We follow this approach to reproduce
the feature extraction as it was performed in [7]. The result-
ing feature map was afterwards resized to the original image
resolution.

The speckle index is awidely used estimator of the amount
of speckle noise in laser and acoustic imaging [9,33]. It was
computed on the uncompressed B-mode image, following
q = σ

μ
, where the mean μ and the standard deviation σ were

calculated over 15 × 15 windows.
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Spatial feature

The distance from the catheter was also included as a feature
since it is a common reference for segmentation [29,34].
As the regions lumen, vessel wall/plaque and background
are concentrically disposed, this feature reflects this spatial
characteristic.

Shadow indicators

Twomeasures related to the cumulative grey level were taken
into account, namely shadow (Sh) and relative shadow (Sr ),
defined by

Sh(x, y) = 1

Nr Nc

Nr∑

ys=y

BI(x, ys) (2)

and

Sr (x, y) = 1

Nr Nc

Nr∑

ys=y

ysBI(x, ys) (3)

where BI is a binary image thresholding I with a threshold
T H = 14, and Nr and Nc are the height and the width of the
polar image, respectively [8].

Edge detection filters

The 3×3 Sobel, Laplacian and Prewitt kernels were applied.
Although the aim of the present work is the assessment of
features for region discrimination and not the borders among
them, these edge indicatorswere also evaluated [8,12,26,29].

Feature selection

Time-complexity and memory requirements of a segmenta-
tion algorithm are highly dependant on the features that it
uses. Thus, a minimal subset of relevant features is valuable.
The aim of the feature selection process is to build such sub-
set of features Fr , from the set of all available features F .
Nevertheless, finding Fr is NP-hard.

Sequential forward selection is a greedy approach that
allows to obtain a sub-optimal subset of features in polyno-
mial time. This algorithm starts with an empty set of features
Fr , and it iteratively incorporates new features only if they
improve the results with respect to the previous configura-
tion of Fr . Though the process should stop when adding
more features does not improve the accuracy, we decided to
force it to continue so it is possible to assess a larger num-
ber of features (Algorithm 1). One feature selection process
was performed for each combination of training–validation
within the K-fold. The results show that the accuracy mea-

sures do not improve after |Fr | = 10, though we continue
the feature selection process until |Fr | = 20.

Algorithm 1 Sequential forward selection
Fr ← ∅
λs ← {10m ,m = {−7, . . . ,−1}}
for |Fr | ← 1 . . . 20 do

p ← 0
fbest ← ∅
for i ← 1 . . . |F | do

Q ← Fr ∪ fi
for j = 1 . . . |λs| do

Train SVM with Q and λ j
Calculate AUC-PR ∀I of the validation set
Calculate μ(AUC-PR)

if μ(AUC-PR) > p then
p ← μ(AUC-PR)

fbest ← fi
end if

end for
end for
Fr ← Fr ∪ fbest
F ← F − fbest

end for

Support vector machine

Support vector machines (SVMs) are supervised learning
models that are widely used in several applications, includ-
ing data mining and image segmentation [10,14,20]. SVMs
are binary classifiers that are able to learn the optimal hyper-
plane that better separates two distributions of feature vectors
in the feature hyperspace, according to a collection of train-
ing data. In this work, we applied SVM to characterize image
pixels in the lumen/no lumen and background/no background
categories separately.

Let the training set S be composed by N training sam-
ples (xi , yi ), where xi ∈ R

M is the feature vector of a given
pixel i , and yi ∈ {−1,+1} its corresponding true label (+1
is assigned to the class of interest and −1 to any other class).
The set of all the feature vectors in S comprises a distribution
in a M-dimensional feature space. In the ideal case, the dis-
tributions corresponding to both classes should be linearly
separable by a hyperplane {β, β0}, verifying:
yi (xTi β + β0) > 0. (4)

The distance between the separating hyperplane and the clos-
est points is called the margin. The SVM method manages
to find the hyperplane {β, β0} that maximizes that margin.

By rescaling β and β0, Eq. 4 can be rewritten as

yi (xTi β + β0) > 1. (5)

Thus, the margin is 1/‖β‖, and the maximization of the mar-
gin is equivalent to the minimization of ‖β‖.
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In practice, the distributions of feature vectors are not usu-
ally linearly separable, but overlapped. In that case, the SVM
minimization problem must be refined so vectors overpass-
ing the hyperplane are allowed. This setting is provided by
the introduction of the slack variables ξi , resulting in a soft
margin of separation. The corresponding objective function
to be minimized is given by the expression:

min
β,β0

λ

2
‖β‖2 +

N∑

i=1

ξ2i

subject to yi xTi β + β0 ≥ 1 − ξi , ∀i.
(6)

The regularization parameter λ > 0 is user-defined, as it con-
trols the penalty of allowing the maximization of the margin
or the minimization of the classification errors on the train-
ing set. In each step of the sequential forward selection, the
value of λ is linearly adjusted by considering λ ∈ 10i , with
i ∈ −7,−6, . . . ,−1. The one that maximizes the perfor-
mance on the validation set is selected.

The predicted class of a new pixel t on the test set, with
feature vector xt , is given by the sign of f (xt ) = xTt β +β0.

The computational cost of solving the objective function
(Eq. 6) is proportional to the number of pixels N on the
training data. Due to the large size of the training sets (N >

7 × 106 pixels), we approximate the solution by means of a
linear SVM solver for large dataset, named Stochastic Dual
Coordinate Ascent (SDCA) [27], as provided by [31].

Evaluation metrics

The proportion of lumen/no lumen in the IVUS images is
11–89% when cartesian coordinates are considered, and
24–76% when the images are transformed to polar coor-
dinates. For background/no background, the proportions are
19–81% and 36–64%, respectively. This analysis shows a
slight skewed-class problem even when using polar coordi-
nates. As a consequence, the area under the precision–recall
curve (AUC-PR) was chosen as accuracy measure since it
better deals with label distribution problems than the typi-
cally area under the ROC curve [18]. The likelihood f (x)

was used to construct the PR curve. The higher the AUC-
PR is, the more accurate the pixel classification will be. The
PR curve implementation provided byVedaldi and Fulkerson
[31] was used.

The F1-score is a measure used for evaluating binary
classifications with unbalanced classes. It is defined as the
harmonic mean of precision and recall,

F1-score = 2 × precision · recall
precision + recall

. (7)

This metric was obtained by evaluating the binary segmen-
tations obtained using the sign( f (x)) rule.

Finally, for comparison with the results obtained on the
IVUS segmentation challenge [4], Jaccard Measure (or Jac-
card Index—JM) and Percentage of Area Difference (PAD)
were calculated, previously transforming the resulting score
maps to the cartesian domain. In this process, it is impor-
tant restoring the blank area corresponding to the catheter,
which was discarded when the image was transformed to
polar coordinates.

Results

Figure 2a shows the first and last selection of each feature
for the five training–validation folds performed for lumen/no
lumen characterization. The horizontal shades highlight the
feature groups described in Table 2, named image filters, spa-
tial feature, noise feature, Haralick’s textural features, Laws’
textural features, local binary patterns, Gabor filters, shadow
indicators and edge detectors. Similarly, Fig. 2b shows the
feature selection for background/no background characteri-
zation.

Figure 3a depicts the evolution of AUC-PR and F1-score
in the lumen/no lumen characterization on each training–
validation fold and on the test set. At the moment of
evaluating on the test set, the most frequent selected feature
at each position of the fivefold was added to the feature set.
The SVM was trained with the whole training–validation
dataset using λ = 0.0001, which is the most frequently
selected value when the measures reach stability. Similarly,
Fig. 3b shows AUC-PR and F1-score in the background/no
background characterization using the same criteria when
evaluating on the test set.

Table 3 depicts the mean training time of an SVM as
Fr grows. The experiments were conducted on an Intel i7-
3630QM platform at 2.4 GHz, with 6 GB of RAM.

Table 4 shows the values of JM and PAD for the best
subsets of features Fr found: Fr = {F1, F6, F10} for
lumen/no lumen and Fr = {F1, F3, F6, F8, F18, F64} for
background/no background characterization.

Figure 4 shows an example of the pixel prediction on two
polar IVUS images. These images were retrieved from the
test set and they have been characterized using the best Fr for
each problem. Figure 4a shows a vessel wall eccentric from
the catheter position. Figure 4d corresponds to an image with
a large plaque region.

Discussion

Lumen/no lumen characterization

Figure 2a, b shows that the intensity feature maximum inten-
sity average (F6) is the one that was mostly chosen at
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Fig. 2 Earlier and latest selection of each image feature (Table 2) during the feature selection for each fold. a Feature selection for lumen/no lumen
characterization. b Feature selection for background/no background characterization

the first iteration of the feature selection processes. This
behaviour can be explained by the high linear correlation
between the feature value and the class labelling (−0.83
for lumen/no lumen and −0.81 for background/no back-
ground). For lumen/no lumen, the likelihood obtained using
F6 reached the AUC-PR up to 0.98 and F1-score was close to
0.92 (Fig. 3a), verifying the results of [30]. On the second and
third iterations, the original image (F1) or Haralick’s textural
features were mostly selected (F10, F15, F19) over distance

from catheter (F8) and E5E5 (F26). AUC-PR had a slightly
improvement to 0.988, and the F1-score reached 0.93. On the
following iterations, no improvement is observed (Fig. 3a)
and no group or feature was clearly selected (Fig. 2a).
When Fr = {F1, F6, F10}, JM and PAD reached 0.83 and
0.18, respectively (Table 4). Figure 4b, e shows examples of
lumen/no lumen characterizationwith a fewnoisy likelihoods
in some pixels.
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Table 2 Group, name and summarized description for each feature

Feature group Name of feature Summary

Image filters [19] F1. Original polar image –

F2. Gaussian filter Gaussian filter applied 25 times using
σ = 0.5

F3. Median filter Median filter applied 25 times using a
7 × 7 window [26]

F4–5. Perona–Malik Anisotropic diffusion [24] applied with
6000 iterations using K = 0.013 and
K = 0.023

F6. Maximum intensity average Used in [30]

F7. Detail-preserving anisotropic diffusion Proposed by Aja-Fernández and
Alberola-Lopez [1]

Spatial feature F8. Distance from catheter Spatial feature

Noise feature [9] F9. Speckle index Calculated over a 15 × 15 window in the
uncompressed B-mode image

Haralick’s textural features
[13,28]

F10. Angular second moment Calculated over a 15 × 15 window
(N–S–E–W directions)

F11. Contrast

F12. Sum of squares or Variance

F13. Inverse difference moment

F14. Entropy

F15. Angular second moment Calculated over a 15 × 15 window (N–S
directions)

F16. Contrast

F17. Sum of squares or Variance

F18. Inverse difference moment

F19. Entropy

Law’s textural features [20] F20–44. L5L5, L5E5, L5S5, L5W5, L5R5, E5L5, E5E5, E5S5,
E5W5, E5R5, S5L5, S5E5, S5S5, S5W5, S5R5, W5L5,
W5E5, W5S5, W5W5, W5R5, R5L5, R5E5, R5S5, R5W5,
R5R5

5 × 5 convolving kernels. Each pixel is
characterized with the energy of each
textural feature

Local binary patterns (LBP) F45–47 (R = 1, P = 8),(R = 2, P = 16),(R = 3, P = 24) Used in [6]

Gabor filters F48–63 (σx , Φ, F) = [(12.7205, 0◦, 0.0442), (6.3602, 0◦,
0.0442), (3.1801, 0◦, 0.0442), (1.5901, 0◦, 0.0442),
(12.7205, 45◦, 0.0884), (6.3602, 45◦, 0.0884), (3.1801, 45◦,
0.0884), (1.5901, 45◦, 0.0884), (12.7205, 90◦, 0.1768),
(6.3602, 90◦, 0.1768), (3.1801, 90◦, 0.1768), (1.5901, 90◦,
0.1768), (12.7205, 135◦, 0.3536), (6.3602, 135◦, 0.3536),
(3.1801, 135◦, 0.3536), (1.5901, 135◦, 0.3536)]

Used in [7]

Shadow indicators F64. Shadow Proposed by [8]

F65. Relative Shadow

Edge detectors F66–67. Sobel N–S and E–W direction 3 × 3 kernels. Basis of the canny edge
detectors used in [8,12,26,29]

F68–69. Prewitt N–S and E–W direction

F70–71. Laplacian N–S and E–W direction

Background/no background characterization

On the first iteration, by selecting F6, the AUC-PR was near
0.96 and F1-score is close to 0.88 (Fig. 3b). On the sec-
ond iteration, distance from catheter (F8) was selected if

F6 was retrieved in the first iteration, or viceversa. This
can be explained by the relatively low correlation (0.58)
between these features, and F8 is slightly inversely corre-
lated (−0.77)with the background/no background labelling.
This means that the new feature provided additional infor-
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Fig. 3 Accuracy measures: AUC-PR (solid line) and F1-score (dashed line). Blue lines represent training–validation folds. Red lines represent
measures on the test set. a Feature selection for lumen/no lumen characterization. b Feature selection for background/no background characterization

mation. AUC-PR went from 0.96 to 0.99, and F1-score
had a remarkable growth from 0.88 to 0.93. On the third
and fourth iterations, AUC-PR and F1-score slightly grew,
adding to Fr an intensity feature (F3, F5, F7), Haralick’s
textural feature (F16 and F18), the speckle index (F9) or
the Shadow feature (F64). The linear correlations with the
labelling have lower absolute value than features previously
selected (−0.71,−0.71,−0.73,−0.32, 0.33,−0.32 and 0.5,
respectively). However, in Fig. 3b, the slightly growth of the
curves shows that they incorporated few additional informa-
tion. The implications of the linear correlation between the
features and classes and between features themselves in the
feature selection process has been previously noticed in [32].
Beyond the fifth iteration, a more frequent feature in each
iteration cannot be found, but still a feature can be added to
Fr .

When Fr = {F1, F3, F6, F8, F18, F64} JM and PAD
attained 0.85 and 0.15, respectively (Table 4). Figure 4c, f
shows a good separation between regions, although there are
some values in the plaque region that can lead to misclassi-
fications when segmenting.

General remarks

In Fig. 2a, b, a predominance of pure image intensity filters
over other features can be observed, as they were selected
earlier on the feature selection process. The early selection
of F3, F5 and F7 verifies the good results of nonlinear filters
previously stated in [19,26]. The noisy original image (F1)
was usually selected before the Gaussian filter F2. This is
likely due to the fact that in F1 the speckle noise remains

Table 3 SVM training time (in seconds)

|Fr |
1 3 6 10 20

Lumen/no lumen 1.27 1.68 2.00 2.50 4.59

Background/no background 1.36 1.56 2.02 2.59 4.43

Table 4 Mean(SD) values of Jaccard Measure (JM) and percentage
of area difference (PAD) for the test set, using Fr = {F1, F6, F10}
for lumen/no lumen characterization, and Fr = {F1, F3, F6, F8, F18,

F64} for background/no background characterization. These measures
are calculated in the cartesian coordinate system

Lumen/no lumen Background/no background

JM 0.83 (0.05) 0.85 (0.04)

PAD 0.18 (0.06) 0.15 (0.04)

punctual, but in F2, it propagates the noise to the neighbour-
ing pixels.

Following image filters, Haralick’s textural descriptors
were selected over other features groups in both characteriza-
tion problems. The capability of this textural feature family
when segmenting IVUS has been previously noticed in [25].
Nevertheless, Laws’ textural features are useful in [20] since
they are used to adjust an initial contour inside a restricted
neighbourhood of the image. It seems that LBP, Gabor filters
and edge detectors will not be appropriate for segmenting the
arterial wall under the conditions of the present work.

The distance from catheter (F8) is presented in fully
automatic segmentation algorithms [12,29,30,34], both in
implicit or in explicit way. In our experiments, this feature
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Fig. 4 Examples of the likelihoods obtained for each region of interest.
Figures are marked with the reference segmentation and the likeli-
hood (colour map proposed in [21]). a, d Lumen–intima marked in
red, separating lumen/no lumen. Media–adventitia marked in green,

separating background/no background. b, e Lumen/no lumen charac-
terization using Fr = {F1, F6, F10}. c, f Background/no background
characterization using Fr = {F1, F3, F6, F8, F18, F64}
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Fig. 5 Characterization of Fig. 4a for background/no background
excluding F8 from Fr (Fr = {F1, F3, F6, F18, F64}). The measures
on the test set reached AUC-PR=0.98(0.01), PAD=0.2(0.05) and
JM=0.81(0.05)

was always selected for background/no background charac-
terization. Although this feature depends on the training data,
Fig. 4c shows that the characterization generally performs
well, evenwhen the artery is eccentric from the catheter posi-
tion. Analysing the weights of β, the distance from catheter
affects the prediction f (x) less than 25%, in comparison
with the remaining features in Fr . Figure 5 shows the impact
of the absence of F8 from the subset of relevant features.

Most of the participants in the IVUS segmentation chal-
lenge, presented at the CVII workshop at MICCAI 2011
conference [4], used the features analysed in the present
work for their segmentation methods, such as [8,20,26,30].
Images with artefacts, shadows, bifurcations or side vessels
were excluded from ours experiments since each one of these
characteristic should be processed in a different way than
the arterial wall tissue [2,29,30]. The resulting values of JM
and PAD, obtained with a simple thresholding, are close to
the reported values of the challenge for images having only
plaque (Table 4). These values demonstrate the feasibility
of segmenting IVUS images using SVMs and the retrieved
image features. The proposed characterization scheme can be
integrated with a segmentation technique that exploits other

intrinsic characteristics to determine a unique contour of LI
and MA.

The presence of irrelevant features in the feature space
prevents the proper separation of points, for example, by
a cutting plane. A priori, at later iterations of the feature
selection, undesired featureswill diminish the accuracy.Nev-
ertheless, SVM deals well with irrelevant features due to
the value of the parameter λ and the addition of slack vari-
ables. Different values of λ were recurrently tested during
the sequential feature selection. As the size of the selected
feature set grew and less relevant features were added, higher
values ofλwere required to remain high theAUC-PRandF1-
score values (Fig. 3). A similar behaviour of feature selection
and SVMswas previously observed in [10]. Furthermore, our
experimental results show that the training time of the SVM
using 20 features takes 2 times more than using 6 features as
we propose (Table 3).

Finally, the K-fold cross-validation successfully avoids
overfitting. Figure 3 shows that the quality measures behave
similarly when evaluated on the training and test sets, with
slightly smaller values, as theoretically expected [3].

Conclusions

An analysis of image features for IVUS segmentation was
presented. It was based on a sequential forward selection
process using SVMs and the PR curve. Moreover, a success-
ful dimensionality reduction of the image feature space was
achieved, decreasing the computational resources for feature
extraction and training.

Image filters, such as the maximum intensity average, the
original image and the median filtered image, and Haral-
ick’s textural features, specially when characterizing N–S
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direction, demonstrated better discrimination capability for
arterial regions than other image features.

AUC-PR showed to be useful to guide the feature selection
process. The resulting values of AUC-PR, F1-score, JM and
PAD, for IVUS images not containing plaque or presenting
a fibrotic one, indicate that segmentation of IVUS images
usingSVMs is feasible, but it canbe improved since it still can
lead to the presence ofmisclassifications and features such as
calcified plaques, bifurcations and side vessels. Furthermore,
the determination of an unique contour of LI or MA from the
score map is not trivial, as the qualitative results exhibit.

Finally, the K-fold cross-validation with K = 5 prevented
overfitting, and the strength of the SVM as classifier in pres-
ence of irrelevant features has been shown.
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