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Abstract—Objective: In this work, we present an extensive
description and evaluation of our method for blood vessel
segmentation in fundus images based on a discriminatively
trained, fully connected conditional random field model. Methods:
Standard segmentation priors such as a Potts model or total
variation usually fail when dealing with thin and elongated
structures. We overcome this difficulty by using a conditional
random field model with more expressive potentials, taking
advantage of recent results enabling inference of fully connected
models almost in real-time. Parameters of the method are learned
automatically using a structured output support vector machine,
a supervised technique widely used for structured prediction
in a number of machine learning applications. Results: Our
method, trained with state of the art features, is evaluated
both quantitatively and qualitatively on four publicly available
data sets: DRIVE, STARE, CHASEDB1 and HRF. Additionally,
a quantitative comparison with respect to other strategies is
included. Conclusion: The experimental results show that this
approach outperforms other techniques when evaluated in terms
of sensitivity, F1-score, G-mean and Matthews correlation co-
efficient. Additionally, it was observed that the fully connected
model is able to better distinguish the desired structures than the
local neighborhood based approach. Significance: Results suggest
that this method is suitable for the task of segmenting elongated
structures, a feature that can be exploited to contribute with
other medical and biological applications.

Index Terms—Blood vessel segmentation, Fundus imaging,
Conditional Random Fields, Structured Output SVM.

I. INTRODUCTION

AGE-related macular degeneration (AMD) (26%), glau-
coma (20.5%) and diabetic retinopathy (8.9%) are the

most frequent causes of preventable blindness in Europe [1].
These diseases are linked to such changes in fundus as change
of shape and structure of vessels and lesions that are often easy
to detect using fundus images.

Fundus photographs (Fig. 1a) are projective color images of
the inner surface of the human eye. Such images are widely
used as they allow physicians to examine in a non-invasive
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way the retina and its anatomical components, including the
vascular tree, the optic disc and the fovea [2].

The development of automatic tools for the early detection
of retinal diseases is valuable since they can be easily inte-
grated in screening programs, where large numbers of images
are taken from patient populations, and careful evaluation by
physicians is not feasible in a reasonable time [3]. These tools
are usually aided by the analysis of morphological attributes
of retinal blood vessels, which provide valuable information
for the diagnosis, screening, treatment and evaluation of the
previously mentioned diseases [3]. In other cases, vessels need
to be previously detected in order to facilitate the automation
of the detection of lesions with similar intensities [4].

However, any automated analysis of the retinal vasculature
requires its accurate segmentation first. In current best practice,
this task is performed manually by trained experts, although
this is particularly tedious and time-consuming. Furthermore,
difficulties in the imaging process–such as inadequate contrast
between vessels and background, and uneven background
illumination–and the variability of vessel width, brightness and
shape, reduce significantly the coincidence among segmenta-
tions performed by different human observers [5]. These facts
motivate the development of automatic strategies for blood
vessel segmentation without human intervention [3].

Although numerous attempts have been made in the field
of automated retinal vessel segmentation, this task is still an
active area of research due to the potential impact of having
more accurate results [2]. In general, existing approaches
can be classified into two main categories, supervised and
unsupervised. Supervised methods require a set of train-
ing samples–typically composed of pixels features and their
known annotations–to learn a model or a classifier. Several
classifiers have been considered in the literature, including
k-nearest neighbors [6], Bayesian [7], support vector ma-
chines [8], [9], neural networks [10], [11], decision trees [12],
[13], Gaussian mixture models [5], AdaBoost [14], among
others. A trainable filter, named B-COSFIRE, was recently
introduced in [15] to highlight the retinal vasculature. Though
the method is not supervised in the sense of training a classi-
fier, the strategy they follow to adjust its parameters is based on
training data. By contrast, unsupervised methods are systems
that are able to segment the vasculature without requiring
any manual annotations, although typically at the cost of
lower accuracy. In general, most of these strategies are based
on applying thresholding, vessel tracking techniques [16] or
region-oriented approaches–such as region growing [17]–[19]
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or active contours [20], [21]–after vessel enhancement. This
task is performed by means of morphological operations [22],
matched filter responses [23]–[25], the complex continuous
wavelet transform [26], among others [27]. The method we
propose in this paper belongs to the supervised category.

Conditional Random Fields (CRFs) are extensively used
for image segmentation in several applications [28]–[30]. To
the best of our knowledge, however, they were never applied
before to blood vessel segmentation in fundus images. This is
likely due to that the standard pairwise potentials, such as in
a Potts model, assign a low prior to the elongated structures
that comprise a vessel segmentation. This fact motivated us
to introduce a novel method for blood vessel segmentation
based on fully connected CRFs [31], which we extend in
this article. Fully connected CRFs were previously applied in
[32] and [33] for liver and brain tumor segmentation in CT
and MRI, but their implications on the segmentation of two
dimensional, thin structures was not previously studied. In this
work we demonstrate that the dense connectivity augments
the capability of the method to detect elongated structures,
overcoming the original difficulty of local neighborhood based
CRFs and improving results significantly. This property can
potentially contribute to a number of different biological and
medical applications where the segmentation of such structures
is required, including automatic plant root phenotyping [34]
or neuron analysis [35].

As is shown in [36], local classification leads to misclassifi-
cation issues that might arise while incorporating prior knowl-
edge about the shape of the desired structures on the learning
process. CRFs are able to provide such information through
the pairwise potentials. Structured Output SVM (SOSVM) has
been used before to learn local neighborhood based CRFs [37],
[38]. However, learning dense CRFs using SOSVMs was
avoided before due to its computational intractability, since
the learning method requires multiple calls to the inference
algorithm during training, and the inference in dense CRFs
is usually slow. We overcome this problem by making use
of recent advances in efficient inference in fully connected
CRFs [36].

In this paper, we complement our previous work [31]
with further information and implementation details. We also
modify the strategy to estimate additional parameters of the
method in order to optimize its performance during training.
Additionally, we extend the validation of our results with
an evaluation performed both quantitatively and qualitatively
on four standard and publicly available data sets (DRIVE,
STARE, CHASEDB1 and HRF) to study the behavior of the
algorithm under different contexts, including images of healthy
patients, containing pathologies and taken at different resolu-
tions. According to our experiments, this method outperforms
current strategies when evaluating in terms of several different
quality measures.

The remainder of this paper is organized as follows: Sec-
tion II explains in detail our method. In Section III we provide
information about the data sets and the quantitative measures
used in our experiments. Section IV presents our results,
including a comparison to other recently published approaches.
Section V discusses the advantages of the proposed method

and further lines of research. Finally, Section VI concludes the
paper. Supplementary materials provide extensive additional
evaluation.

II. METHODS

This section explains in detail our method. First, both
the local neighborhood based and the fully connected CRF
formulations are described (Section II-A). Afterwards, we
summarize the strategy to learn such models by means of
a SOSVM (Section II-B). The features used to evaluate our
method are explained in Section II-C. Finally, Section II-D
describes a compensation factor that can be used to segment
images with different resolutions without needing to recali-
brate feature parameters.

A. Conditional Random Fields for vessel segmentation
The segmentation task can be posed as an energy mini-

mization problem in a conditional random field (CRF). In the
original definition of CRFs, images are mapped to graphs,
where each pixel represents a node, and every node is con-
nected with an edge to their neighbors according to a certain
connectivity rule [29], [36], [39]. In local neighborhood based
CRFs, nodes are connected following a 4 pixel neighborhood
connectivity [40], while in the fully connected definition each
node is assumed to be linked to every other pixel of the image
[36].

We denote by y = {yi} a labeling over all pixels of the
image I in the label space L = {�1, 1}, where 1 is associated
to blood vessels and -1 to any other class. A conditional
random field (I,y) is characterized by the Gibbs distribution:

p (y|I) = 1

Z(I)

exp

0

@�
X

c2CG

�c(yc|I)

1

A (1)

where Z(I) is a normalization constant, G is the graph
associated to I and CG is a set of cliques in G, each inducing
a potential �c [30]. This distribution states the conditional
probability of a labeling y given the image I . The Gibbs
energy function can be derived from this likelihood:

E(y|I) =
X

c2CG

�c(yc|I) (2)

Thus, the maximum a posteriori (MAP) labeling can be
obtained by minimizing the corresponding energy:

y

⇤
= argmin

y2L
E(y|I) (3)

After minimizing E(y|I), a binary segmentation of the vascu-
lature is obtained. For notational convenience, we will omit the
conditioning in the rest of the paper, and we will use  c(yc) to
denote �c(yc|I). Additionally, we will consider energies that
decompose as summations over unary and pairwise potentials,
in contrast to more general higher order potentials [41].

Given a graph G on y, its energy is obtained by summing
its unary and pairwise potentials ( u and  p, respectively):

E(y) =

X

i

 u (yi,xi) +

X

(i,j)2CG

 p (yi, yj , fi, fj) (4)
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where xi and fi are the unary and pairwise features, res-
pectively. Unary potentials define a log-likelihood over the
label assignment y, and they are traditionally computed by a
classifier [36]. Pairwise potentials define a similar distribution
but considering only the interactions between pixels features
and their labels, according to CG , which is determined by the
graph connectivity.

Unary potentials are common to both the local neighbor-
hood based and the fully connected CRF, and they are obtained
as follows:

 u (yi,xi) = �hwuyi
,xii �w�yi

� (5)

where � is a bias constant, and wuyi
and w�yi

represents the
weight vectors for the features and the bias term, respectively,
both associated to the label yi. The unary vector xi is given by
an arbitrary combination of features extracted from the image.

Pairwise potentials are defined as a linear combination of
functions. Thus, our pairwise energy is obtained according to:

 p (yi, yj , fi, fj) = µ(yi, yj)

MX

m=1
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(m)
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(m)
i , f

(m)
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where each k

(m) is a fixed function over an arbitrary feature
f

(m), wp
(m) is a linear combination weight, and µ(yi, yj)

represents a label compatibility function. The Gaussian kernels
determine the similarity between connected pixels by means
of f (m). Since the neighboring information is provided by the
connectivity rule followed by the model, these kernels depend
on the CRF formulation, so they are described afterwards. The
remaining terms are detailed in the sequel.

The compatibility function µ penalizes similar pixels that
are assigned to different labels, and it is given by the Potts
model µ(yi, yj) = [yi 6= yj ], where Iverson bracket notation
[·] indicates one if the statement is true and zero otherwise.

Parameters wu, wp
(m) control the relevance of the unary

features and the pairwise kernels on the energy function,
respectively. Additionally, w� is used to learn the bias term.
The adjustment of these parameters is not feasible to be done
manually due to their high dimensionality, so we propose to
learn them using a Structured Output SVM, as is explained in
detail in Section II-B.

1) Local neighborhood based CRFs: Local neighborhood
based CRFs (LNB-CRFs) are defined over grid graphs. Thus,
in this type of model each node (pixel) is assumed to be
connected by an edge to its 4-connected neighbors. The
function for the pairwise potentials given the m-th pairwise
feature is obtained as follows:

k
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(m)
j

⌘
=

|f (m)
i � f

(m)
j |
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2
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where ✓(m) is a bandwidth that controls the relevance of
the dissimilarities between pixel features. The energy of the
grid based model is minimized using the min-cut/max-flow
approach proposed by [40].

2) Fully connected CRFs: In a fully connected CRF model
(FC-CRF), each node of the graph is assumed to be linked to
every other pixel of the image. Using these higher order poten-
tials, the method is able to take into account not only neigh-
boring information but also long-range interactions between
pixels. This property improves the segmentation accuracy, but
makes implementation of the inference process computation-
ally expensive in general. Recently, however, Krähenbühl and
Koltun [36] have introduced an efficient inference approach
under the restriction that the pairwise potentials are a linear
combination of Gaussian kernels over an Euclidean feature
space. This approach, which is based on taking a mean field
approximation of the original CRF, is able to produce accurate
segmentations in a few seconds.

Pairwise kernels for the fully connected model have the
following form:
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(8)
where pi and pj are the coordinate vectors of pixels i and
j. Positions are included in the pairwise terms to increase
the effect of close pixels over distant ones. Kernel widths
✓p and ✓(m) control the degree of relevance of the two
parts of the kernels in the expression. For instance, when ✓p

increases, much longer interactions are taking into account.
On the contrary, when ✓p decreases, only local neighborhoods
significantly affect the result. Similarly, when ✓(m) increases
or decreases, higher or lower differences on the m-th feature
are tolerated, respectively.

B. Learning CRFs with Structured Output SVM

Our goal is to learn a vector w = (wu,w� ,wp), where wu,
w� and wp are the weights for the unary features, for the bias
term and for the pairwise kernels, respectively. The vector w
can be high-dimensional if multiple features are considered, so
manual or automated adjustment using techniques such as grid
search is not feasible in a reasonable time. Supervised learning
of the unary potentials separately from the pairwise potentials
might be an alternative, but this approach ignores the influence
of the pairwise potentials on the general energy formulation,
and can lead to worse results than joint learning of the weights.
We therefore propose to obtain w in a supervised way, using
the 1-slack formulation of the SOSVM with margin-rescaling
presented in [38]. Such a discriminative training approach
has shown promising results for building highly complex and
accurate models in several areas, including object detection,
image segmentation and computer vision applications, even
for large datasets. To the best of our knowledge, however, it
was never used before for the task of learning FC-CRFs.

Let the training set S = {
�
s

(1)
, y

(1)
�
, ...,

�
s

(n)
, y

(n)
�
},

where n is the number of training images. Each y

(i) corres-
ponds to the ground truth of the i-th image in the training set.
Each set s(i) = {x(i)

,�, f

(i)} contains the set x(i) of unary
feature vectors, a bias constant � = 1, and the set f

(i) of
pairwise features for every pixel in the image.
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The weights w are obtained by solving:

min
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where C is a regularization constant; ⇠ is a slack variable
shared across all the constraints ȳ

(i); '(s, y) is a feature map
function that relates a given set s with a given labelling y; and
�(y, ȳ) is a loss function that evaluates the difference between
a ground truth y and a constraint ȳ. In this work, we define
� as the Hamming loss:

�(y, ȳ) =

X

i

[yi 6= ȳi] (10)

where we used Iverson bracket notation. This function penal-
izes all the differences between the predicted labelling and the
gold standard segmentation.

Our feature map is defined as follows:

'(s, y) =
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k
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k
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where the components represent the sum of the unary feature
map, the bias feature map and the pairwise feature map,
respectively, for all the pixels in the image. We give precise
definitions of 'u, '� , and 'p in the sequel.

We define a binary vector 'y(yi) 2 {0, 1}|L| such that:

'y(yi) =

⇢
(1, 0) if yi = �1

(0, 1) if yi = 1

(11)

The individual feature maps are obtained as follows:

'u(xk, yk) = xk ⌦ 'y(yk) (12)

'�(�, yi) = �'y(yi) (13)

8m : ['p (yk, yj , fk, fj)]m = µ(yi, yj)k
(m)
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(m)
i , f
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where ⌦ is the Kronecker product. We solve Eq. (9) efficiently
using the cutting-plane approach proposed in [38].

C. Features
We evaluated our method using features that are widely used

in the field of blood vessel segmentation in fundus images:
responses to the multiscale line detectors presented by Nguyen
et al. [42] and responses to 2D Gabor wavelets [7] are used
to compute the unary potentials, and a vessel-enhanced image
processed with the method by Zana and Klein [22] for the
pairwise potentials.

All features are extracted from grey scale images, obtained
by taking the inverted green band of the original, RGB color
image, as reported by other works [10], [15]. Additionally, due
to false detections introduced by the selected features on the
border of the FOV, we replicate the strategy proposed in [7] to
simulate a wider aperture of the capture device. By means of
this technique, false detections occurring outside the original
FOV can be easily removed by multiplying the resulting image
with the original FOV mask. An example of the resulting
preprocessed image is shown in Fig. 1b.

Nguyen et al. line detectors exploit the property that blood
vessels appear as elongated structures. The average intensity
is calculated along a line of length l passing through each
target pixel P at different orientation angles ↵. The line with
the largest mean intensity Ll(P) is selected from all the
considered orientations, and the line strength of the pixel is
computed by taking the difference Sl(P) = Ll(P)�Ns(P),
with Ns(P) being the average intensity in a square window
centered on P with edge length s. An example of the responses
obtained with l = 15 is shown in Fig. 1c. The original version
of this feature combines responses at different scales and the
inverted green channel into a single feature, which is then
thresholded. Here we take each Sl and the inverted image
separately, since our method is able to learn the best weights
to combine the features. Thus, instead of having a single value
per pixel, we have a feature vector composed of the responses
to each value of l and the image I .

2D Gabor wavelets have the capability to detect oriented
features and can be tuned to specific frequencies. This property
is especially useful to enhance the vasculature, since blood
vessels appear at different sizes and orientations. We compute
this feature exactly as reported by Soares et al. [7] at different
scales a. Responses of the image to this wavelet, taken at
different values of a, are included as features. Fig. 1d depicts
an example obtained with a = 3.

Zana and Klein’s technique for vessel enhancement takes
advantage of the fact that the vessels are linear, connected,
and their curvature varies smoothly along the crest line [22].
Noise of the image is first reduced by applying an opening
by reconstruction operation, using linear structuring elements
of length l at different angles. Afterwards, multiple top-hat
morphological operations are applied using the same struc-
turing elements, and the sum of the corresponding responses
for each given angle is taken. This transformation reduces
small bright noise and improves the contrast of all linear
components. Structures whose curvature is linearly coherent
are then detected by means of a cross-curvature evaluation,
performed by applying a Laplacian of Gaussian with windows
of size 7 ⇥ 7 pixels and standard deviation 7/4. Finally,
an alternating filter composed by successive application of a
morphological opening, a closing and an opening is applied
to remove false detections of non linear patterns on bright or
dark thin irregular zones and background linear features. In
the three last operations, the same linear structuring element
of length l is used. We have observed that this feature is highly
sensitive to uneven illumination of the fundus, degrading its
ability to characterize the blood vessels effectively. In order
to improve its quality we incorporated an additional prepro-
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Image preprocessing and unary and pairwise features examples. (a)
Original color image. (b) Inverted green band after border expansion. (c)
Response to Nguyen et al. line detector (l = 15). (d) Response to Soares
et al. 2D Gabor wavelet at the scale a = 3. (e) Inverted image after bias
correction. (f) Image enhanced using Zana and Klein method (l = 9).

cessing, only for this feature, where an estimated background
is subtracted from the green band of the original color image.
The background is estimated by convolving the green band
with a median filter, where the size of the filter kernel is large
enough to ensure that the blurred image contains no visible
structures such as vessels. This approach has been applied
several times in the literature [10], [43], and an example of
the resulting image is illustrated in Fig. 1e. The Zana and
Klein feature is illustrated in Fig. 1f.

All features are normalized independently to zero mean and
unit variance, using the mean and the standard deviation of
each feature calculated on each image [7].

D. Scaling Models to Images of Different Resolution
Although the weights for the unary features and the pair-

wise kernels are adjusted during the learning process, system
performance is still related to the capability of the features to
effectively characterize vascular structure. In general, features
are sensitive to their parameters, which are usually related
to vessel properties such as their calibre, which is at the
same time related to the image resolution. Responses to the
2D Gabor wavelet, for example, depend on the scale a.
Similarly, Nguyen et al. line detectors and the Zana and
Klein enhancement strategy depend on the length l of the
detectors or the linear structuring element, respectively. Most
of these feature parameters were originally set using low
resolution images, such as those in the DRIVE dataset [44].
When applying such features to higher resolution images,
performance is significantly reduced if the feature extraction
procedure is not proportionately scaled. Other parameters such
as the angles for computing feature responses at different
orientations are not influenced by changes in the resolution
of the images.

A similar behavior can be expected for preprocessing pa-
rameters, e.g. the size of the median filter used to estimate the

background, or the size of the aperture simulated by the border
expansion. The parameter ✓p used on the pairwise potentials
of the FC-CRF is also influenced by image resolution, since
it weighs the pairwise interactions according to the relative
distance of each pixel.

The proper adjustment of such parameters is relevant when
applying the framework to images of different resolution, and
having an automatic strategy for their calibration is valuable.
Grid search using labelled images in the training set is
computationally prohibitive due to the high dimensional space
that comprises the parameters and their combinations. As an
alternative to manual adjustment, some authors propose to
derive parameters related to the vessel calibre from the width
of the vessel of interest [15] or the size of the optic nerve
head [45]. However, both methods require prior knowledge
about structures that are difficult to measure and vary from
one image to another. We introduce in the sequel a different
strategy to automatically adapt features and model parameters
to images of different resolution.

Instead of adjusting the configuration for each single data set
resolution, we propose a simple approach based on estimating
the best configuration of feature parameters on a single data
set, and then adapting such parameters by multiplying them
with a compensation factor ⇢ =

Xnew
Xtraining

, where Xtraining rep-
resents the average width of the FOV in the images used to
configure the scales, and Xnew is the average width of the FOV
in the new images. As changes in the resolution are expected
to be related to changes in the number of pixels associated to
the FOV region, this simple approach approximates invariance
of feature computation with respect to scaling.

III. MATERIALS AND EVALUATION

This section describe the data sets and the metrics used to
evaluate our method. Additionally, we provide further details
about the strategy followed to estimate the parameters ✓p and
✓(m) of the CRF, and the C parameter of the SOSVM (Eq. (9)).

A. Datasets

Our experiments were carried out on DRIVE [44], STARE
[46], CHASEDB1 [12] and HRF [24], [47], four standard,
publicly available data sets of fundus images used for the
evaluation of blood vessel segmentation algorithms.

DRIVE1 includes 40 color fundus photographs (7 of them
with pathologies) with a 45

� FOV, with 8 bits per color
channel at 565⇥ 584 pixel resolution. The set is divided into
a training and a test set, both containing 20 images. Two
different manual annotations are provided for the test set, and
only one annotation per image is available on the training set.

STARE2 comprises 20 images, 10 of them containing
pathologies, captured at 35� FOV, with 8 bits per color channel
and a resolution of 700⇥ 605 pixels. Two observers manually
segmented all images, with the second observer marking
vessels with thinner annotations than the first one [5]. Despite
this variability in annotation methodology between the two

1http://www.isi.uu.nl/Research/Databases/DRIVE/
2http://www.ces.clemson.edu/⇠ahoover/stare/probing/index.html

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.ces.clemson.edu/~ahoover/stare/probing/index.html
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observers, performance is normally evaluated using the first
observer’s segmentation as the ground truth [10], [15]. FOV
masks are not provided in the original set, so the masks built
by Marin et al.3 [10] were used. The set is not divided into
training and test, and no consistent evaluation methodology
has emerged from the reviewed literature. In order to be able
to compare our method with respect to the largest amount of
the available literature we performed our evaluation on STARE
using leave-one-out cross-validation.

CHASEDB14 contains images of each eye of 14 children,
comprising a total of 28 images. Pictures were captured with
30

� FOV, using 8 bits per color channel at 1280⇥ 960 pixels,
centered on the optic disc. Two expert labelings per image
are provided. FOV masks were obtained using the approach
proposed in [15], as they are not provided in the original
dataset. The 28 images are divided into training and test, with
8 and 20 images in each set, respectively [12]. The first 20
images are used for testing, and the last 8 images for training.

The HRF5 data set contains 15 images of healthy patients,
15 images of patients with diabetic retinopathy and 15 images
of glaucomatous patients. Images were captured with 60

�

FOV and 3304 ⇥ 2336 pixel resolution. Only one ground
truth segmentation per image is available, generated by a
group of experts. To the best of our knowledge, this data set
was not previously employed to evaluate supervised vessel
segmentation algorithms, so we constructed a training set
comprising the first 5 images of each subset, and tested on
all remaining images. To reduce the computational cost of
our experiments, images and labels on the training set and
images on the test set were downsampled by a factor of 2, and
results were afterwards upsampled so they can be compared
with respect to the original manual annotations.

B. Evaluation Metrics
Results were analyzed quantitatively by comparing our

segmentations with the gold standard labelings provided on
each data set. Seven different measurements were obtained,
all of them in terms of the number of true positives TP , true
negatives TN , false positives FP and false negatives FN ,
and considering only the pixels inside the FOV:

Se =

TP

TP + FN

, Sp =

TN

TN + FP

, Pr =

TP

TP + FP

F1 =

2 · Pr ·Re

Pr +Re

, G =

p
Se⇥ Sp

MCC =

TP/N � S ⇥ Pp
P ⇥ S ⇥ (1� S)⇥ (1� P )

where N = TP+TN+FP+FN is the total number of pixels
of the image, S = (TP + FN)/N and P = (TP + FP )/N .
Sensitivity (Se, also known as Recall Re) measures the
capability of the method to properly detect blood vessels,
while specificity (Sp) is an indicator of the capability of
distinguishing all other non-vessel structures. Sp suffers in

3http://www.uhu.es/retinopathy/muestras2.php
4http://blogs.kingston.ac.uk/retinal/chasedb1/
5https://www5.cs.fau.de/research/data/fundus-images/

the presence of imbalanced classes due to the low influence
of the false positives term in the denominator of the fraction.
By contrast, Se does not present this issue as it involves a
fraction of pixels corresponding to the vessel class. However,
though a higher Se value is desired, it must be analyzed in
combination with Sp, as Se can be trivially maximized by
labeling all pixels as vascular. Precision (Pr) quantifies the
ratio of pixels classified as vessel that are correctly identified.
The Accuracy (Acc) is not included as it is sensitive to
unbalanced distributions in the number of pixels belonging
to the positive and negative classes [15].6 We include the
Matthews Correlation Coefficient (MCC), the F1-score (F1)
and the G-mean (G), which are overall performance measures
that are more suitable to imbalanced class ratios. The MCC
is a correlation coefficient between the manual and predicted
binary segmentations, and it has been previously used for
the evaluation of retinal vessel segmentation methods [11],
[15], [17]. It returns a value between 1 and +1, with +1

indicating a perfect prediction, 0 no better than random, and
1 a total disagreement between prediction and ground truth.
The F1-score is the harmonic mean of precision and recall,
and it also has the property of better characterizing quality
when data are imbalanced. It achieves its maximum value of
1 when the segmentation of the positive class is perfect, and its
lowest value of 0 when the segmentation is completely wrong.
Similarly, the G-mean is a metric that measures the balanced
between Se and Sp by taking their geometric mean, returning
a value between 0 and 1 [48]. Finally, receiver operating
characteristic (ROC) curves were also generated from the
unary potentials and the energy of the FC-CRF, and the area
under each curve (AUC) was computed. The AUC on STARE
was obtained by computing the ROC curve on each image and
taking the average value.

C. Model selection
Parameters for computing the unary features were initially

fixed to the values reported by the original references, which
use the DRIVE training set [7], [42]. Thus, responses to the
2D Gabor wavelet were obtained at scales a = 2, 3, 4, 5, and
responses to line detectors were analyzed from l = 1 to 15,
with increments of l0 = 2. As Zana and Klein used different
data to estimate the length of the structuring element, we
selected l = 9, which is consistent with the average calibre of
DRIVE vessels as reported in [49]. The size of the windows
used for preprocessing the image to compute this feature was
fixed at 35 pixels, and the border of the FOV was expanded
by 50 pixels. For datasets other than DRIVE, we made use
of the compensation factor ⇢ described in Section II-D. In
the case of the Nguyen line detector, the increment l0 is also
multiplied to reduce the dimensionality of the feature vector
when evaluating on images with higher resolutions. The angles
were set to the values reported in the original references [7],
[22], [42].

To estimate the parameter C of the SOSVM we randomly
divided each training set into two new subsets, training* and
validation, containing 70% and 30% of the training images,

6Accuracies are included in the supplementary material for completeness.

http://www.uhu.es/retinopathy/muestras2.php
http://blogs.kingston.ac.uk/retinal/chasedb1/
https://www5.cs.fau.de/research/data/fundus-images/
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TABLE I
EVOLUTION OF F1-SCORE DURING FORWARD FEATURE SELECTION ON

DRIVE.

Features Unary potentials Pairwise potentials
Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter. 2

Line detector 0.6898 0.7256 - 0.7535 0.6985
2D Gabor wavelet 0.6967 - - 0.7423 0.7437

Zana and Klein enhanced 0.6378 0.7043 0.7129 0.7546 -

respectively. We used training* to train the model, and valida-
tion to estimate the best C value. A model selection phase was
initially performed, in which the SOSVM was trained using
different values of C. Performance of each trained model was
evaluated on the validation set. Values of C 2 {(10i)/c}, with
i 2 {�2, ..., 0, ..., 3} with c equal to the total number of FOV
pixels in the training set were evaluated. The configuration was
selected to maximize the average F1-score on the validation
set. That learned configuration of the CRF model was then
evaluated on the test set only once. This configuration prevent
us from using any test data to adjust parameters, allowing us
to obtain a non-biased estimate of the test error [50]. Cross-
validation was used on the STARE dataset.

A similar approach was followed with the purpose of
adjusting ✓p: for a fixed value of C, different ✓p values
spanning from 1 to 15 were explored, and the one that
maximized the F1-score on the validation set was chosen. This
search, however, was performed only once, using the DRIVE
validation set. At the time of evaluation on the remaining sets,
the selected value ✓p = 5 was multiplied by the compensation
factor.

Forward feature selection using DRIVE’s training* and
validation sets was followed to identify which feature com-
binations are more suitable for the unary and the pairwise
potentials. Table I shows the progress in the mean F1-score
obtained on the validation set for each configuration of features
in each iteration. Numbers in bold indicate that the set of
features was chosen in that iteration. We observed that the 2D
Gabor wavelet contributes to detect thicker structures but with
a large number of false positives. By adding responses to the
Nguyen et al. line detector, false positives are reduced and
narrower vessels are segmented. Pairwise potentials showed
better performance when using the Zana and Klein vessel
enhanced image in the kernel. This configuration was applied
to all subsequent data sets.

A strategy to estimate the scale parameter of a radial basis
function is to take the median of all pairwise distances of
a random sample of pixels [51]. Since part of each pairwise
kernel consists of a radial basis function (Eq. 6), this approach
was applied to the estimation of ✓(m). This estimator is robust
in that it has low variance when it is computed over different
random samples [51]. However, small changes to ✓(m) can
affect the results due to the exponentiation in the pairwise
term and the number of interactions taking into account by
the fully connected model. Therefore, we estimate ✓(m) as the
median of medians obtained over 50 different random samples
of pairs (f

(m)
i , f

(m)
j ) extracted from the training set of each

data set.

TABLE II
QUANTITATIVE EVALUATION OF THE RESULTS OBTAINED ON DRIVE,

STARE, CHASEDB1 AND HRF, USING ONLY THE UNARY POTENTIALS
(UP) OR THE FULLY CONNECTED CRF (FC-CRF).

Dataset Method Se Sp Pr F1 G MCC
DRIVE UP 0.7079 0.9802 0.8394 0.7661 0.8324 0.7401

FC-CRF 0.7897 0.9684 0.7854 0.7857 0.8741 0.7556
STARE UP 0.7692 0.9675 0.7445 0.7517 0.8618 0.7252

FC-CRF 0.7680 0.9738 0.7740 0.7644 0.8628 0.7417
CHASEDB1 UP 0.7110 0.9707 0.7386 0.7209 0.8304 0.6919

FC-CRF 0.7277 0.9712 0.7438 0.7332 0.8403 0.7046
HRF UP 0.7315 0.9680 0.7012 0.7127 0.8413 0.6851

FC-CRF 0.7874 0.9584 0.6630 0.7158 0.8686 0.6897

IV. EXPERIMENTS AND RESULTS

In this section we present the results obtained in our
experiments. The prototype of this method was implemented
with MATLAB R2013a, using MEX functions to interface
with C++ implementations of the LNB-CRF and the FC-CRF.
In Section IV-A we summarize and analyze the results, while
in Section IV-B we include a comparison with respect to other
published methods.

A. Results
A quantitative evaluation of the results obtained on our

experiments using only the unary potentials and using the FC-
CRF is presented in Table II. The binary segmentations were
obtained by minimizing the corresponding energies using the
mean field approximation strategy proposed in [36]. Results
obtained with the LNB-CRF are not included in the table
as they are exactly the same than those obtained using only
the unary potentials. This is due to the fact that, in this
configuration, the SOSVM assigns an almost-zero value to wp,
the parameter that weights the local pairwise potentials, and
at the same time it does not modify the weights associated to
the unary potentials with respect to the configuration achieved
when only the unary potentials are considered. This is because
the grid connectivity does not provide valuable information
in the context of elongated structures such as retinal vessels.
By contrast, SOSVM assigns a non-zero value to wp when
training the FC-CRF, and also modifies the weights associated
to the unary features and the bias term, meaning that the
pairwise potentials influence the other parameters and con-
tribute substantially to the prediction function. To evaluate the
statistical significance of such influence, a set of right-tailed
Wilcoxon signed-ranks hypothesis tests were performed on the
quality values obtained using only the unary potentials and
using the FC-CRF. No hypothesis tests were performed on
STARE results since segmentations on this set were obtained
by leave-one-out cross validation. Taking into account that
the parameter C was tuned according to a validation set
subsampled from each training set, it is not possible to assume
that all the results were achieved with the same configuration.
In addition to the quantitative analysis, we also provide several
segmentation examples to analyze qualitatively the changes
introduced by the pairwise potentials.

In some of the data sets the FC-CRF contributes to a statis-
tically significant improvement in the results when evaluating
in terms of F1-score (DRIVE: p ⇡ 4 ⇥ 10

�5; CHASEDB1:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Segmentation results obtained on DRIVE (first row) and CHASEDB1
(second row). First column: Image 04 of DRIVE (a) and Image_05L of
CHASEDB1 (e). Second column: Segmentations obtained using only the
unary potentials (b,f). Third column: Segmentations obtained using the FC-
CRF model (c,g). Fourth column: ground truth labelling (d,h).

p ⇡ 1⇥10

�3), G-mean (DRIVE: p ⇡ 4⇥10

�5; CHASEDB1:
p ⇡ 8⇥ 10

�5; HRF: p ⇡ 9⇥ 10

�7) and MCC (DRIVE: p ⇡
4⇥10

�5; CHASEDB1: p ⇡ 4⇥10

�3; HRF: p ⇡ 2⇥10

�2). F1-
score and MCC are improved on average on STARE and HRF,
as indicated in Table II. In the case of HRF, the improvement
in the F1-score is lower than that obtained on other data sets.
G-mean is also increased on average on STARE.

When evaluating on DRIVE, the pairwise potentials im-
prove the Se value (p ⇡ 4 ⇥ 10

�5) and slightly reduce the
average Sp (p ⇡ 4⇥ 10

�5). This is likely due to the FC-CRF
introducing a certain fraction of false positives, as it can be
observed in the reduction of the average Pr (p ⇡ 4⇥ 10

�5).
In all such cases, however, the fraction of improvement in Se

is higher than the reduction on Sp and Pr, which is evidenced
by the improvement in the G-mean, and also in the F1-score
and the MCC values. Some examples of the segmentations
obtained on DRIVE are shown in Fig. 2. It is possible to
observe that the FC-CRF model incorporates a number of
thinner vessels and significantly improves the connectivity of
the vascular structure.

In STARE, the G-mean is slightly improved when using
the dense approach. When decomposed into their terms, it is
possible to see that the Se is slightly reduced in average, but
with an improvement in both the average Sp and Pr, which
is associated with a reduction in the number of false positive
pixels. An example of this setting is observed in Fig. 3, which
depicts an extreme pathological case. The FC-CRF contributed
to reducing the number of false positives in the haemorrhage
inside the optic disc. Yet the second human observer identified
vessels within that region, the first human observer (which is
assumed as the ground truth) did not mark anything there,
which directly affects the Se value. Some narrow structures
are integrated to the vascular tree by the FC-CRF model, and
it can also be observed that the unary potentials overestimated
the width of some of the major vessels.

In CHASEDB1, results are increased in terms of both Se

(p ⇡ 7⇥ 10

�5) and Sp, although the improvement in this last
metric is not statistically significant. As a consequence, the
G-mean is increased. The average Pr value is also improved

by the FC-CRF, which is explained by the reduction in the
number of false positives, as seen in Fig. 2. It is also possible to
observe that in both test sets, the unary potentials overestimate
the calibre of the narrower vessels, a setting that is improved
when incorporating the pairwise potentials.

A different behavior can be observed on HRF (Fig. 4),
where Se is significantly increased (p ⇡ 9 ⇥ 10

�7) but
Sp (p ⇡ 9 ⇥ 10

�7) is diminished. Pr is also decreased
(p ⇡ 9 ⇥ 10

�7), meaning that a number of false positives in
introduced. We observed qualitatively, however, that the FC-
CRF detects a large number of narrow vessels that are ignored
when using only the unary potentials, as can be seen in Fig. 5.
It is possible to see also that some of the thinner capillaries
remain ignored. Additional work on feature construction might
help to incorporate such structures. It can be seen that the
pairwise potentials contribute to joining isolated detections,
resulting in a more general connected tree, and in an increase
in the G-mean value.

A comparison between the ROC curves obtained using only
the unary potentials and using the FC-CRF can be observed
in Fig. 6, where the second human observer performance on
each set (if available) is plotted. The curve on STARE-C is not
included since results there were obtained by cross-validation,
and the segmentation of each image was made with a different
model. Results on DRIVE show that the FC-CRF outperforms
the unary potentials, and also that they are quantitatively tied
to the second observer performance. When evaluating on HRF,
however, and in line with the analysis previously performed,
the unary potentials results in a better ROC curve than the
FC-CRF. The areas under each of the curves are in line with
these conclusions.

Finally, the computation cost of our single-thread, single-
core implementation of the inference on the FC-CRF model
was evaluated on an Intel(R) Xeon(R) CPU E5-2690 0 plat-
form at 2.90GHz with 64 GB of RAM. For this purpose, the
average time of applying the FC-CRF on each test set was
measured. As seen in Fig 7, although the computational cost
grows with the resolution of the images, it is still fast enough
to be feasibly applied in a clinical setting.

B. Comparison with other methods

We also include a comparison of our results with respect
to those reported by other state-of-the-art methods evaluated
on DRIVE and STARE (Table III), CHASEDB1 and HRF
(Table IV). Although our method is supervised, we also
compare with unsupervised approaches in the tables. Methods
that obtained the final binary segmentations using parameters
that were estimated on the test data were not included on
the tables of DRIVE and STARE, since that setting might
underestimate the actual test error [52, Section 6].7 Despite

7In [15], the results reported on DRIVE test set, STARE and CHASEDB1
correspond to the binary segmentations obtained by thresholding the responses
to the B-COSFIRE filter. However, the threshold is selected by maximizing
the average MCC on each corresponding test set. Similarly, in [10], [12],
[13], [53] the scores provided by different classifiers are thresholded using
the parameter that maximizes the average Acc on the test data (DRIVE test
set, STARE and CHASEDB1 in the case of [12], [13], [53], and DRIVE test
set and STARE in [10]).
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(a) (b) (c) (d) (e)

Fig. 3. Segmentation results obtained on a serious pathological case on STARE. (a) Image im0005. (b) Segmentation obtained using only the unary potentials.
(c) Segmentations obtained using the FC-CRF model. (d) First human observer annotations. (e) Second human observer annotations.

(a) (b)

(c) (d)

Fig. 4. Segmentation results obtained on HRF test set. (a) Image 11_g. (b)
Manual annotation. (c) Segmentation obtained using only the unary potentials.
(d) Segmentation obtained using the FC-CRF.

(a) (b) (c) (d) (e)

Fig. 5. Example of narrow vessel detection under low contrast conditions.
(a) Detail of Image 11_g. (b) Preprocessed image. (c) Manual annotation.
(d) Segmentation obtained using only the unary potentials. (e) Segmentation
obtained using the FC-CRF.

that those other papers have evaluated a different setting, we
included their results for completeness in the supplementary
materials. Results obtained similarly but on CHASEDB1 were
included in Table IV as they are the only works evaluated on
those sets. However, they are marked with an asterisk.

Our method reports the highest F1-score and MCC on
DRIVE when compared with other supervised and unsuper-
vised strategies. Se is also higher, for a relatively acceptable
Sp value. As mentioned before, the Sp measure describes the
capability of the method to distinguish the non-vessel class,
and it usually suffers when the segmentations have a high
number of false positives. However, the Pr value is higher
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Fig. 6. ROC curves on DRIVE, CHASEDB1 and HRF, using only the unary
potentials (UP, slashed line) or the FC-CRF (solid line), and second human
observer (HO) performance.
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Fig. 7. Computational cost of the FC-CRF inference in all the data sets used
for evaluation.

than the method by Fathi et al. [26], which has reported a
higher Sp value but a lower average Se.

Comparison on STARE is difficult as most of the state-
of-the-art methods performed their analysis using their own
strategies to train and test.8 It must be taken into account, then,
that the supervised methods listed in the comparison illustrated

8Some methods were trained on the first half and tested on the second half
of STARE [54] or even on the entire set [15], or were trained on a random
sample of pixels extracted from STARE [7], etc.
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TABLE III
COMPARISON OF AVERAGE Se, Sp, Pr, F1-SCORE, G-MEAN AND MCC VALUES OF OUR METHOD WITH RESPECT TO OTHER EXISTING BLOOD VESSEL

SEGMENTATION ALGORITHMS AND THE 2ND HUMAN OBSERVER, WHEN EVALUATING ON DRIVE AND STARE.

DRIVE STARE
Methods Se Sp Pr F1 G MCC Se Sp Pr F1 G MCC
FC-CRF 0.7897 0.9684 0.7854 0.7857 0.8741 0.7556 0.7680 0.9738 0.7740 0.7644 0.8628 0.7417

2nd human observer 0.7760 0.9730 0.8066 0.7881 0.8689 0.7601 0.8951 0.9387 0.6424 0.7401 0.9166 0.7225
Supervised

Dai et al. [5] 0.7359 0.9720 - - 0.8458 - 0.7769 0.9550 - - 0.8614 -
Niemeijer et al. [6] 0.6793 0.9725 - - 0.8128 - - - - - - -
Lupascu et al. [14] 0.6728 0.9874 - - 0.8151 - - - - - - -

Orlando and Blaschko [31] 0.7850 0.9670 0.7770 0.7810 0.8713 0.7482 - - - - - -
Soares et al. [7] 0.7283 0.9788 - - 0.8443 - 0.7200 0.9750 - - 0.8379 -
Xu and Luo [8] 0.7760 - - - - - - - - - - -
You et al. [9] 0.7410 0.9751 - - 0.8500 - 0.7260 0.9751 - - 0.8414 -

Vega et al. [11] 0.7444 0.9600 - 0.6884 0.8454 0.6617 0.7019 0.9671 - 0.6082 0.8239 0.5927
Unsupervised

Al-Diri et al. [20] 0.7282 0.9551 - - 0.8340 - 0.7521 0.9681 - - 0.8533 -
Chakraborti et al. [25] 0.7205 0.9579 - - 0.8308 - 0.6786 0.9586 - - 0.8065 -

Fathi and Naghsh-Nilchi [26] 0.7768 0.9759 0.7559 0.7669 0.8707 - 0.8061 0.9717 0.7027 0.7509 0.8850 -
Fraz et al. [17] 0.7152 0.9768 0.8205 0.7642 0.8358 0.7333 0.7409 0.9665 0.7363 0.7386 0.8462 0.7003
Fraz et al. [18] 0.7302 0.9742 0.8112 0.7686 0.8434 0.7359 0.7318 0.9660 0.7294 0.7306 0.8408 0.6908

Odstrcilik et al. [24] 0.7060 0.9693 - - 0.8272 - 0.7847 0.9512 - - 0.8639 -
Roychowdhury et al. [19] 0.7390 0.9780 - - 0.8501 - 0.7320 0.9840 - - 0.8487 -

Yin et al. [16] 0.6522 0.9710 - - 0.7958 - 0.7248 0.9666 - - 0.8370 -
Zhao et al. [21] 0.7420 0.9820 - - 0.8536 - 0.7800 0.9780 - - 0.8734 -

TABLE IV
COMPARISON OF AVERAGE Se, Sp, Pr, F1-SCORE, G-MEAN AND MCC

VALUES OF OUR METHOD WITH RESPECT TO OTHER EXISTING BLOOD
VESSEL SEGMENTATION ALGORITHMS AND THE 2ND HUMAN OBSERVER,

WHEN EVALUATING ON THE CHASEDB1 AND HRF.

CHASEDB1 Se Sp Pr F1 G MCC
FC-CRF 0.7277 0.9712 0.7438 0.7332 0.8407 0.7046

2nd human observer 0.7425 0.9793 0.8090 0.7686 0.8527 0.7475
Fraz et al. [13]* 0.7259 0.9770 0.7732 0.7488 0.8421 -

HRF Se Sp Pr F1 G MCC
FC-CRF 0.7874 0.9584 0.6630 0.7158 0.8687 0.6897

Odstrcilik et al. [24] 0.7794 0.9650 0.6950 0.7324 0.8672 0.7065

in Table III were trained miscellaneously. When evaluated
on this set, our method reports the highest average F1-score
and MCC values, indicating a better overall performance.
Additionally, the FC-CRF outperforms the other strategies in
terms of the Pr measure, meaning that the number of false
positive detections is lower than in the other cases.

When evaluating on CHASEDB1 it is possible to see that
our method achieved a better Se value than the other strategies.
The F1-score value is outperformed, yet the results reported in
the reference were obtained using parameters estimated from
the test labels, and the parameters of the features it used were
adjusted to this specific data set. In contrast, our FC-CRF
model was trained using feature parameters that were scaled
using the compensation factor.

To the best of our knowledge, only unsupervised methods
were previously tested on HRF [24], [55]. We include the
results of [24] on the test set calculated from the binary seg-
mentations provided by the corresponding authors. In general,
it is possible to see that the FC-CRF gives higher Se values
than the method proposed in [24], but with lower Sp and Pr

values. This means that the FC-CRF obtains a larger number
of false positive detections than the other strategy. However,

global metrics including F1-score and MCC are competitive.

V. DISCUSSION

The FC-CRF model and the learning strategy better ex-
ploited the interaction between pixels features than the lo-
cal neighborhood based approach. The local neighborhood
approach was not able to improve results with respect to
the unary potentials, as a zero weight is assigned to the
pairwise term by the structured output SVM. The hypothesis
tests performed on the results obtained by both the FC-
CRF and the unary potentials on a number of different data
sets, as explained in Section IV-A, demonstrated that the
dense pairwise potentials introduced statistically significant
improvements in several metrics. Additionally, as evidenced
in ROC curves in Fig 6, the FC-CRF model also yields results
that are tied to the second human observer performance. Such
properties are due to the contribution of the high order pairwise
potentials, which are able to better reconstruct the vessels even
under low contrast conditions (Fig. 5) with a negligible time
overhead (Fig 7). Although no directional prior is explicitly
learned by the model, the combination of the distance and
the feature dissimilarity terms within the pairwise kernel
(Eq. (8)) provides a way to penalize too long or dissimilar
interactions, respectively. Thus, if the pairwise features are
robust enough, then the model will assign low energies to the
labellings of filamentary structures, and will penalize other
non elongated shapes. The features analyzed in this work
consistently achieved better results than using only unary
potentials, as observed in Table I. By contrast, the LNB-CRF
model is not able to take advantage of the pairwise features,
as evidenced by the absense of improvement with respect to
the unary potentials. Based on this property, it is possible to
conclude that dense potentials are able to better characterize
the vessels. Other medical and biological applications might
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benefit by using this approach for segmenting other tubular and
elongated structures such as vessels, neurons or plant roots.

Extensive comparison with state of the art methods has
also shown that our approach consistently performed well
on several metrics, and is a fully-automated segmentation
algorithm that achieves better results when evaluated in terms
of global binary classification measures such as F1-score,
G-mean and MCC. This is in part due to previous studies
focusing on raw pixel accuracy, which ignores the fact that
the number of pixels occupied by blood vessels is a relatively
small fraction of the image. As a result, competing methods
suffer as measured by F1-score, G-mean and MCC, which are
particularly important as they reflect an accurate estimation of
the vessel pixels, the primary goal in vessel segmentation for
fundus image analysis.

As in the case of other supervised techniques–such as
Gaussian mixture models [7] or SVMs [8]–the performance
of our method is affected by the general ability of the features
to characterize the retinal vasculature. State of the art features
were used in our experiments in order to evaluate the contri-
bution of the fully connected model in the improvement of the
original results. Most of the features presented in the literature
were designed using low resolution images such as those in
DRIVE and STARE. Since the design of features involves
the adjustment of different parameters that are effected by
image scale, a decrease in performance is expected when the
resolution of the images differs from the original setting. An
alternative to reduce this effect would be to design the features
for each specific resolution, though this is particularly time
consuming. Instead, we proposed to use a simple technique
based on applying a compensation factor ⇢ that is multiplied
to each scale parameter before feature extraction. Using this
basic approach our method is able to partially compensate
for changes in resolution, outperforming other well-known
segmentation strategies.

Although our approach achieves overall good performance,
we have observed some misclassifications in the bright central
reflex of the major arteries in the high resolution images
in CHASEDB1 and HRF. This is likely due to the limited
capability of both the unary and the pairwise features to
deal with this property, as it was not taken into account
when they were originally designed. Additional feature de-
velopment or learning would be valuable in order to improve
performance under this or other challenging contexts, such
as in the presence of serious pathological changes. Currently,
most features work well on lower resolution images, as fewer
features have been developed for high resolution images such
as HRF. It is a promising avenue of research to consider image
structures that become apparent at higher resolutions, such as
the central reflex in arteries. We encourage further research in
this direction. Furthermore, evaluating other types of higher
order potentials, combined with this learning approach, could
potentially improve the results by capturing other types of
pixel interactions. However, it must be taken into account
that those approaches always involve a trade-off between
performance and computational tractability.

VI. CONCLUSIONS

In this work, we have presented a detailed description and
evaluation of our discriminatively trained segmentation model
based on a fully connected CRF for the purpose of blood vessel
segmentation in fundus images. By means of features extracted
from the images and fully connected pairwise potentials, this
approach is able to reconstruct the retinal vasculature much
more precisely than using only the unary potentials or a local
neighborhood based CRF. The effectiveness of the approach
is evidenced by the general improvement in the values of
F1-score, G-mean and Matthews correlation coefficient–three
quantitative measures that are suitable in binary classification
problems where the number of true positive and true negative
pixels are unbalanced–obtained on a number of benchmark
data sets. ROC curves also show that results achieved with
the FC-CRF are comparable with those obtained by a second
human observer. The capability of the dense potentials to
reconstruct elongated structures can potentially benefit other
biological and medical applications. Segmentation masks and
additional implementation details are available at http://homes.
esat.kuleuven.be/⇠mblaschk/projects/retina/.
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[24] J. Odstrčilı́k et al., “Retinal vessel segmentation by improved matched
filtering: evaluation on a new high-resolution fundus image database,”
IET Image Processing, vol. 7, no. 4, pp. 373–383, 2013.

[25] T. Chakraborti et al., “A self-adaptive matched filter for retinal blood
vessel detection,” Machine Vision and Applications, vol. 26, no. 1, pp.
55–68, 2014.

[26] A. Fathi and A. R. Naghsh-Nilchi, “Automatic wavelet-based retinal
blood vessels segmentation and vessel diameter estimation,” Biomedical
Signal Processing and Control, vol. 8, no. 1, pp. 71–80, 2013.

[27] A. Soltanipour et al., “Vessel centerlines extraction from fundus flu-
orescein angiogram based on hessian analysis of directional curvelet
subbands,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp. 1070–1074.

[28] X. He et al., “Multiscale conditional random fields for image labeling,”
in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Pro-
ceedings of the 2004 IEEE Computer Society Conference on, vol. 2.
IEEE, 2004, pp. II–695.

[29] S. Kumar and M. Hebert, “Discriminative random fields,” Int. J.
Comput. Vision, vol. 68, no. 2, pp. 179–201, Jun. 2006. [Online].
Available: http://dx.doi.org/10.1007/s11263-006-7007-9

[30] S. Z. Li, Markov Random Field Modeling in Image Analysis, 3rd ed.
Springer, 2009.

[31] J. I. Orlando and M. Blaschko, “Learning fully-connected CRFs for
blood vessel segmentation in retinal images,” in MICCAI 2014, LNCS,
P. Golland, C. Barillot, J. Hornegger, and R. Howe, Eds. Springer,
2014, vol. 8149, pp. 634–641.

[32] S. Kadoury et al., “Higher-order crf tumor segmentation with discrimi-
nant manifold potentials,” in Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2013. Springer, 2013, pp. 719–726.

[33] S. Kadoury et al., “Metastatic liver tumour segmentation from discrimi-
nant grassmannian manifolds,” Physics in Medicine and Biology, vol. 60,
no. 16, p. 6459, 2015.

[34] F. Fiorani and U. Schurr, “Future scenarios for plant phenotyping,”
Annual review of plant biology, vol. 64, pp. 267–291, 2013.

[35] M. Helmstaedter, “Cellular-resolution connectomics: challenges of dense
neural circuit reconstruction,” Nature methods, vol. 10, no. 6, pp. 501–
507, 2013.
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Supplementary Material: A Discriminatively Trained
Fully Connected Conditional Random Field Model
for Blood Vessel Segmentation in Fundus Images

José Ignacio Orlando*, Elena Prokofyeva, and Matthew B. Blaschko

I. INTRODUCTION

IN this supplementary material we include a more detailed
comparison of our method with respect to other state

of the art strategies when evaluating on DRIVE, STARE,
CHASEDB1 and HRF. This information was not included in
the main article due to space limitations. Though the tables do
not pretend to be exhaustive, we try to cover most of the more
recently published works in the field. All the comparison tables
include the values of sensitivity-recall (Se-Re), specificity
(Sp), precision (Pr), accuracy (Acc), area under the ROC
curve (AUC), G-mean, F1-score and Matthews correlation
coefficient (MCC). Works that estimated parameters such as
thresholds using test data were identified with an asterisk,
since the results of such approaches could potentially under-
estimate the actual test error and overestimate each metric
in the tables. We also included a comparison between the
computational time of the LNB-CRF and the FC-CRF model.

II. EVALUATION ON DRIVE
Table I presents a comparison with respect to other state of

the art strategies evaluated on DRIVE. The Se achieved by
our method is maximal, and it is possible to see other works
reporting lower Sp values. At the same time, our method
achieves the highest G-mean, even compared with respect
to the second human observer. This represents that the FC-
CRF model achieved a good balance between Se and Sp.
Our F1-score and MCC values are also the highest, and the
AUC and Acc values are in line with those achieved by other
strategies. Additionally, it worth mentioning that our method
obtained similar quality measures as those obtained by the
second human observer.

III. EVALUATION ON STARE
As mentioned in the main article, the STARE data set

comprises 20 images (10 of them containing pathologies)
that are not divided into training and test. Since no standard
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strategy was followed by the reviewed literature at the time
of the evaluation, we have reproduced some other criteria
previously applied to split the images into training and test
sets in order to provide additional comparisons to the existing
literature.

The split followed by Amin et al. [15], which we refer to
as STARE-A, uses the first half of STARE for training and the
second half for testing. Similarly, Azzopardi et al. [1] trained
their method on the first half of STARE and evaluated on
the entire set. This last approach can lead to biased results,
since images used for training are also included on the test
set. We decided to run experiments on STARE-A, and we
also included the results obtained by Azzopardi et al. on the
second half of the original data set.

It must be mentioned that most of the images with serious
pathologies appear in the training set, but not the test set of
STARE-A. To ensure a proper evaluation of their method,
Salem et al. [34] divided the original STARE set into training
and test randomly, but ensuring that the same number of
pathological and healthy images are distributed in each set.
However, they did not report the names of the images used
on each subset, so it is not possible to reproduce exactly
the same partition. We decided to follow a similar approach,
introducing an additional split, named STARE-B, obtained
using the following procedure. First, images were divided into
four groups: normal images (10), images with bright lesions
(5), images with red lesions (3) and images with small lesions
(2). Afterwards, half of each subset was assigned randomly to
the training or the test sets. The configurations of STARE-
A and STARE-B are listed in Table II for reproducibility.
Since no other article has reported results using this split, we
computed the results obtained by Marin et al. [6] on these
images from the quantities presented in their paper.

Table III presents a detailed comparison of the results for
each of the configurations on STARE. In each plit, the FC-
CRF contributes to a statistically significant improvement in
the results when evaluating in terms of F1-score (STARE-A:
p ⇡ 4⇥10�5; STARE-B: p ⇡ 2⇥10�3), G-mean (STARE-A:
p ⇡ 9⇥10�4; STARE-B: p ⇡ 9⇥10�4) and MCC (STARE-A:
p ⇡ 4⇥ 10�5; STARE-B: p ⇡ 2⇥ 10�3).

In STARE-A, the pairwise potentials improve the Se value
(p ⇡ 9⇥ 10�4) and slightly reduce the average Sp (STARE-
A: p ⇡ 9 ⇥ 10�4). This can be explained by the FC-CRF
introducing some false positives, as observed in the reduction
of the average Pr (p ⇡ 9⇥10�4). The fraction of improvement
in the Se value, however, is higher than the reduction on Sp
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TABLE I
COMPARISON OF AVERAGE Se, Sp, AUC, Acc, Pr, Re, F1-SCORE, G-MEAN AND MCC VALUES OF OUR METHOD WITH RESPECT TO OTHER EXISTING

BLOOD VESSEL SEGMENTATION ALGORITHMS AND THE 2ND HUMAN OBSERVER, WHEN EVALUATING ON THE DRIVE TEST SET.

Method Se Sp AUC Acc Pr Re F1-score G-mean MCC
FC-CRF 0.7897 0.9684 0.9506 0.9454 0.7854 0.7897 0.7857 0.8741 0.7556

Unary potentials 0.7079 0.9802 0.9474 0.9453 0.8394 0.7079 0.7661 0.8324 0.7401
2nd human observer 0.7760 0.9730 - 0.9473 0.8066 0.7760 0.7881 0.8680 0.7601

Supervised
Azzopardi et al. [1]* 0.7655 0.9704 0.9614 0.9442 - 0.7655 - 0.8605 0.7475

Cheng et al. [?] 0.7252 0.9798 0.9648 0.9474 - 0.7252 - 0.8429 -
Dai et al. [2] 0.7359 0.9720 - 0.9418 - - - 0.8458 -

Fraz et al. [3]* 0.7406 0.9807 0.9747 0.9480 - 0.7406 - 0.8522 -
Niemeijer et al. [4] 0.6793 0.9725 0.9294 0.9416 - 0.6793 - 0.8128 -
Lupascu et al. [5] 0.6728 0.9874 0.9561 0.9597 - - - 0.8151 -
Marin et al. [6]* 0.7067 0.9801 0.9588 0.9452 0.8433 0.7067 0.7690 0.8322 -

Orlando and Blaschko [7] 0.7850 0.9670 - 0.9437 0.7770 0.7850 0.7810 0.8713 0.7482
Roychowdhury et al. [8]* 0.7249 0.9830 0.9620 0.9519 - 0.7249 - 0.8441 -

Staal et al. [9] - - 0.9520 0.9441 - - - - -
Soares et al. [10] 0.7283 0.9788 0.9614 0.9466 - 0.7283 - 0.8443
Xu and Luo [11] 0.7760 - - 0.9328 - - - -
You et al. [12] 0.7410 0.9751 - 0.9434 - 0.7410 - 0.8500
Vega et al. [13] 0.7444 0.9600 - 0.9414 - - 0.6884 0.8454 0.6617
Unsupervised

Al-Diri et al. [14] 0.7282 0.9551 - - - 0.7282 - 0.8340 -
Amin et al. [15] 0.6608 0.9799 0.9360 0.9191 - 0.6608 - 0.8047 -

Bankhead et al. [16] 0.7027 0.9717 - 0.9371 - - - 0.8263 -
Budai et al. [17] 0.6440 0.9870 - 0.9572 - - - 0.7973 -

Chakraborti et al. [18] 0.7205 0.9579 0.9419 0.9370 - 0.7205 - 0.8308 -
Espona et al. [19] 0.6634 0.9682 - 0.9316 - 0.6634 - 0.8014 -
Espona et al. [19] 0.7436 0.9615 - 0.9352 - 0.7436 - 0.8456 -

Fathi and Naghsh-Nilchi [20] 0.7768 0.9759 0.9516 0.9581 0.7559 0.7768 0.7669 0.8707 -
Fraz et al. [21] 0.7152 0.9768 - 0.9430 0.8205 0.7152 0.7642 0.8358 0.7333
Fraz et al. [22] 0.7302 0.9742 - 0.9422 0.8112 0.7302 0.7686 0.8434 0.7359

Kande et al. [23] - - 0.9518 0.8911 - - - - -
Lam et al. [24] - - 0.9614 0.9472 - - - - -

Martı́nez et al. [25] 0.7246 0.9655 - 0.9344 - 0.7246 - 0.8364 -
Miri et al. [26] 0.7352 0.9795 - 0.9458 - 0.7352 - 0.8486 -

Palomera et al. [27] 0.6440 0.9670 - 0.9250 - 0.6440 - 0.7891 -
Odstrcilik et al. [28] 0.7060 0.9693 0.9519 0.9340 - 0.7060 - 0.8272 -

Roychowdhury et al. [29] 0.7390 0.9780 0.9670 0.9490 - 0.7390 - 0.8501 -
Saffarzadeh et al. [?] - - 0.9303 0.9387 - - - - -

Vlachos and Dermatas [30] 0.7468 0.9551 - 0.9285 - 0.7468 - 0.8446 -
Wang et al. [31] 0.7520 0.9800 - - - 0.7520 - 0.8585 -
Zhang et al. [32] 0.7120 0.9724 - 0.7120 - 0.7120 - 0.8321 -
Zhao et al. [33] 0.7420 0.9820 - 0.9540 - 0.7420 - 0.8536 -

and Pr, which is evidenced by an increase in the G-mean
value, and both F1-score and MCC. Some examples of the
segmentations obtained on STARE-A are shown in Fig. 1. It
is possible to observe that the FC-CRF model incorporates
a number of thinner vessels and significantly improves the
connectivity of the vascular structure. When comparing with
respect to Amin et al. [15] and Azzopardi et al. [1] it is
possible to see that our method outperforms the other two
strategies on a majority of the quality measures.

A different behavior can be observed on STARE-B, where
Se is decreased (p ⇡ 9⇥ 10�4) but the Sp is increased (p ⇡
9⇥10�4). G-mean, however, is improved when using the FC-
CRF. A higher Pr value (p ⇡ 9 ⇥ 10�4) is obtained when
pairwise potentials are used, meaning that the number of false
positives was reduced. This situation can be observed in the
example depicted in Fig. 2, where the FC-CRF has reduced the
number of false positive pixels detected on the red lesions, and
also improved the detection within the optic disc area. When
compared with respect to the other method, it is possible to

see that in general our FC-CRF model reports higher quality
measures, even though the binary segmentations of Marin et
al. [6] were obtained using a threshold that was estimated
using the test data.

The ROC curves obtained on STARE-A and STARE-B are
depicted in Fig. 3. On STARE-A the curve obtained using
the FC-CRF energy surpasses the one obtained using only the
unary potentials. When evaluating on STARE-B, the FC-CRF
potentials are able to obtain better Se values with higher Sp
than those obtained using only the unary energy. For Sp values
around 0.92, the unary potentials achieve better Se values,
though such Sp is not acceptable as such a threshold results
in a large number of false positives.

IV. EVALUATION ON CHASEDB1
CHASEDB1 was divided into training and test by the

creators of the dataset, with 8 and 20 images in each set,
respectively [3]. Azzopardi et al. [1], however, followed a
different approach, training on the first half of the set and
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TABLE II
TRAINING AND TEST SETS CONFIGURATIONS ON STARE. IMAGES

LABELLED AS Training BELONG TO THE TRAINING SET, AND Test TO THE
TEST SET.

Image ID Type STARE-A STARE-B
im0001 Bright lesions Training Training
im0002 Bright lesions Training Test
im0003 Bright lesions Training Test
im0004 Healthy Training Training
im0005 Red lesions Training Training
im0044 Bright lesions Training Training
im0077 Healthy Training Test
im0081 Healthy Training Test
im0082 Healthy Training Test
im0139 Red lesions Training Test
im0162 Healthy Test Test
im0163 Healthy Test Training
im0235 Small lesions Test Test
im0236 Small lesions Test Training
im0239 Healthy Test Test
im0240 Healthy Test Training
im0255 Healthy Test Training
im0291 Healthy Test Training
im0319 Bright lesions Test Test
im0324 Red lesions Test Training

(a) (b)

(c) (d)

Fig. 1. Segmentation results obtained on STARE-A. (a) Image im0162.
(b) Manual annotations. (c) Segmentation obtained using only the unary
potentials. (d) Segmentation obtained using the FC-CRF model.

evaluating on the entire set. As mentioned before, using this
strategy can underestimate the actual test error. In order to
enable a more direct comparison to Azzopardi et al., we
performed an additional experiment, named CHASEDB1-B,
where we trained our method on the first half of the data set
and evaluated it on the remaining images.

Table IV presents the results on both the CHASEDB1 and
the CHASEDB1-B configurations, compared to other state of
the art strategies. As in CHASEDB1, in CHASEDB1-B the
results are increased in terms of both Se (p ⇡ 6 ⇥ 10�5)
and Sp, although the improvement in this last metric is
not statistically significant for a dataet of this size. This
improvement in Se and Sp also increases the corresponding G-
mean. The average Pr value is also improved by the FC-CRF,
which is explained by the reduction in the number of false

(a) (b)

(c) (d)

Fig. 2. Segmentation results obtained on a pathological image on STARE-B
test set. (a) Image im0139. (b) Manual annotation. (c) Segmentation obtained
using only the unary potentials. (d) Segmentation obtained using the FC-CRF.
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Fig. 3. ROC curves on STARE-A, STARE-B and CHASEDB1-B, using only
the unary potentials (UP, dashed line) or the FC-CRF (solid line), and second
human observer (HO, solid dot) performance.

positives, as seen in Fig. 4. It is also possible to observe that
the unary potentials overestimate the calibre of the narrower
vessels, a setting that is improved when incorporating the
pairwise potentials. When comparing to Azzopardi et al., it
is possible to observe that our method reports better F1-score
and MCC values, with higher Pr.

The ROC curve obtained on CHASEDB1-B is presented in
Fig. 3. It is possible to observe that the FC-CRF significantly
outperforms the unary potentials.

V. EVALUATION ON HRF

We include in Table V results obtained on HRF, applying
our method on both downsampled images (FC-CRF) and
images in the original resolution (FC-CRF OR), including
also a stratification by healthy images (HRF-H), diabetic
retinopathy (HRF-DR) and glaucoma (HRF-G).
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TABLE III
COMPARISON OF AVERAGE Se, Sp, AUC, Acc, Pr, Re, F1-SCORE, G-MEAN AND MCC VALUES OF OUR METHOD WITH RESPECT TO OTHER EXISTING

BLOOD VESSEL SEGMENTATION ALGORITHMS AND THE 2ND HUMAN OBSERVER, BASED ON THE STARE DATA SET.

Method Se Sp AUC Acc Pr Re F1-score G-mean MCC
STARE-A
FC-CRF 0.7773 0.9789 0.9726 0.9571 0.8039 0.7773 0.7871 0.8723 0.7654

Unary potentials 0.6516 0.9916 0.9648 0.9552 0.8928 0.6516 0.7505 0.8038 0.7393
2nd human observer 0.9385 0.9365 - 0.9378 0.6389 0.9385 0.7593 0.9375 0.7433

Amin et al. [15] 0.7261 0.9681 - 0.9199 - 0.7261 - 0.8384 -
Azzopardi et al. [1] 0.7588 0.9780 - 0.9553 0.8031 0.7588 0.7772 0.8615 0.7546

STARE-B
FC-CRF 0.7845 0.9768 - 0.9576 0.7835 0.7845 0.7819 0.8754 0.7596

Unary potentials 0.8483 0.9564 0.9561 0.9456 0.6794 0.8483 0.7516 0.9007 0.7288
2nd human observer 0.9022 0.9341 - 0.9324 0.6249 0.9022 0.7272 0.9180 0.7133

Marin et al. [6]* 0.7246 0.9811 - 0.9563 0.8148 0.7246 0.7609 0.8432 -
STARE
FC-CRF 0.7680 0.9738 0.9570 0.9519 0.7740 0.7680 0.7644 0.8648 0.7417

Unary potentials 0.7487 0.9744 0.9561 0.9505 0.7743 0.7487 0.7557 0.8541 0.7317
2nd human observer 0.8951 0.9387 - 0.9352 0.6424 0.8951 0.7401 0.9166 0.7225

Supervised
Cheng et al. [?] 0.7813 0.9843 0.9844 0.9633 - 0.7813 - 0.8769 -

Dai et al. [2] 0.7769 0.9550 - 0.9364 - - - 0.8614 -
Fraz et al. [3]* 0.7548 0.9763 0.9768 0.9534 - 0.7548 - 0.8572 -

Marin et al. [6]* 0.6944 0.9819 0.9769 0.9526 0.8227 0.6944 0.7531 0.8257 -
Roychowdhury et al. [8]* 0.7719 0.9726 0.9688 0.9515 - 0.7719 - 0.8665 -

Staal et al. [9] - - 0.9614 0.9516 - - - - -
Soares et al. [10] 0.7200 0.9750 0.9671 0.9480 - 0.7200 - 0.8379 -

You et al. [12] 0.7260 0.9751 - 0.9497 - 0.7260 - 0.8414 -
Vega et al. [13] 0.7019 0.9671 - 0.9483 - - 0.6082 0.8239 -
Unsupervised

Budai et al. [17] 0.5800 0.9820 - 0.9386 - 0.5800 - 0.7547 -
Chakraborti et al. [18] 0.6786 0.9586 - 0.9379 - 0.6786 - 0.8065 -

Fathi and Naghsh-Nilchi [20] 0.8061 0.9717 0.9680 0.9591 0.7027 0.8061 0.7509 0.8850 -
Fraz et al. [21] 0.7409 0.9665 - 0.9437 0.7363 0.7311 0.7386 0.8462 0.7003
Fraz et al. [22] 0.7318 0.9660 - 0.9423 0.7294 0.7318 0.7306 0.8408 0.6908

Kande et al. [23] - - 0.9298 0.8976 - - - - -
Martı́nez et al. [25] 0.7506 0.9569 - 0.9410 - 0.7506 - 0.8475 -

Lam et al. [24] - - 0.9739 0.9567 - - - - -
Palomera et al. [27] 0.7790 0.9409 - 0.9260 - 0.7790 - 0.8561 -
Odstrcilik et al. [28] 0.7847 0.9512 0.9569 0.9341 - 0.7846 - 0.8642 -

Roychowdhury et al. [29] 0.7320 0.9840 0.9670 0.9560 - 0.7320 - 0.8487 -
Saffarzadeh et al. [?] - - 0.9431 0.9483 - - - - -

Wang et al. [31] 0.7800 0.9780 - - - 0.7800 - 0.8734 -
Zhang et al. [32] 0.7177 0.9753 - 0.9484 - 0.7177 - 0.8366 -
Zhao et al. [33] 0.7800 0.9780 - 0.9560 - 0.7800 - 0.8734 -

TABLE IV
COMPARISON OF AVERAGE Se, Sp, AUC, Acc, Pr, Re, F1-SCORE, G-MEAN AND MCC VALUES OF OUR METHOD WITH RESPECT TO OTHER EXISTING
BLOOD VESSEL SEGMENTATION ALGORITHMS AND THE 2ND HUMAN OBSERVER, WHEN EVALUATING ON THE CHASEDB1 DATA SET. WORKS MARKED

WITH AN ASTERISK USED THE TEST DATA TO ESTIMATE PARAMETERS TO OBTAIN THE BINARY SEGMENTATIONS.

Method Se Sp AUC Acc Pr Re F1-score G-mean MCC
CHASEDB1

FC-CRF 0.7277 0.9712 0.9524 0.9458 0.7438 0.7277 0.7332 0.8407 0.7046
Unary potentials 0.7110 0.9707 0.9284 0.9436 0.7386 0.7110 0.7209 0.8308 0.6919

2nd human observer 0.7425 0.9793 - 0.9539 0.8090 0.7425 0.7686 0.8527 0.7475
Fraz et al. [3]* 0.7224 0.9711 0.9712 0.9469 0.7415 0.7224 0.7318 0.8376 -
Fraz et al. [35]* 0.7259 0.9770 0.9760 0.9524 0.7732 0.7259 0.7488 0.8421 -
CHASEDB1-B

FC-CRF 0.7565 0.9655 0.9478 0.9467 0.6810 0.7565 0.7149 0.8546 0.6878
Unary potentials 0.7224 0.9647 0.9371 0.9428 0.6686 0.7224 0.6896 0.8348 0.6617

2nd human observer 0.8362 0.9724 - 0.9602 0.7501 0.8362 0.7900 0.9017 0.7700
Azzopardi et al. [1]* 0.7623 0.9556 - 0.9387 0.6338 0.7623 0.6876 0.8535 0.6602

In the case of the downsampled images, it can be observed
that, in general, our method performs better than the one
presented in [28] when evaluated in terms of G-mean, with
the exception of results on HRF-G, where the method by

Odstrcilik et al. reports a higher value. When decomposed
into Se and Sp, it is possible to see that the average Se of our
method is higher in all the configurations with the exception
of HRF-G. Figure 5 depicts different segmentations obtained
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(a) (b)

(c) (d)

Fig. 4. Segmentation results obtained on CHASEDB1-B. (a) Image_11L.
(b) Manual annotations. (c) Segmentations obtained using only the unary
potentials. (d) Segmentations obtained using the FC-CRF model.

on HRF-DR, HRF-G and HRF-H. It can be observed that the
FC-CRF improves the detection of narrower vessels and also
the connectivity between structures that were isolated when
using only the unary potentials.

If the FC-CRF is applied on images at the original resolution
of the data set, the F1-score and the MCC are increased with
respect to using the same model on the downsampled images.
This is a consequence of a significant improvement in the Pr
value, which is higher than the obtained using the Odstrcilik
method. In contrast, when using the fully connected model
on lower resolution images, a significantly higher G-mean
value is obtained. When analyzed in terms of Se and Sp,
it is possible to see that that the FC-CRF achieved a higher
Se value on the downsampled images, though the Sp value is
lower. When comparing the results qualitatively, it is possible
to see that some of the detections obtained when using the
original resolution images are isolated and not connected to the
main structure. This can be a consequence of using a ✓p value
that was adapted with a simple scaling strategy. Additionally,
a number of other thin vascular structures that are detected on
lower resolution images are still missing at higher resolutions.
This can be explained by a largest variability in the calibres
of the vessels, that cannot be captured by the relatively small
number of feature scales considered. A degradation in the
capability of the method to deal with the central reflex of the
thicker arteries can be observed at higher resolution images.
As is mentioned in the main article, features used in this work
are state of the art and were not originally designed to deal
with this property. As when using the downsampled images
the artifact is reduced, the largest scales of the unary features
can better deal with them. Evaluating other features in further
works would be extremely valuable to address this issue.

VI. COMPARISON OF COMPUTATIONAL COSTS

In Fig 6 it is possible to observe a comparison of the
computational cost of the inference in the LNB-CRF and the
FC-CRF models. As explained in the main article, these times
were calculated by taking the average time of segmenting
each image on each of the test sets. It is possible to see
that both methods have similar speed. However, it must we
highlighted that the LNB-CRF does not offer any improvement
with respect of using only the unary potentials, so only the
fully connected model yields an improvement.
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Fig. 5. Segmentation results obtained on HRF-DR, HRF-G and HRF-H. First column: images 07_dr (a), 10_g (f) and 03_h (k). Second column: Segmentations
obtained using only the unary potentials in the downsampled images (b,g,l). Third column: Segmentations obtained using the FC-CRF model on the original
images (c,h,m). Fourth column: Segmentation obtained using the FC-CRF model on the downsampled images (d,i,n). Last column: Manual annotations (e,j,o).
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Fig. 6. Computational cost of the LNB-CRF and the FC-CRF inference in
all the data sets used for evaluation.
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