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Abstract

Background and objectives: Diabetic retinopathy (DR) is one of the leading causes of preventable blindness in the
world. Its earliest sign are red lesions, a general term that groups both microaneurysms (MAs) and hemorrhages (HEs).
In daily clinical practice, these lesions are manually detected by physicians using fundus photographs. However, this
task is tedious and time consuming, and requires an intensive effort due to the small size of the lesions and their lack
of contrast. Computer-assisted diagnosis of DR based on red lesion detection is being actively explored due to its
improvement effects both in clinicians consistency and accuracy. Moreover, it provides comprehensive feedback that
is easy to assess by the physicians. Several methods for detecting red lesions have been proposed in the literature,
most of them based on characterizing lesion candidates using hand crafted features, and classifying them into true
or false positive detections. Deep learning based approaches, by contrast, are scarce in this domain due to the high
expense of annotating the lesions manually.
Methods: In this paper we propose a novel method for red lesion detection based on combining both deep learned
and domain knowledge. Features learned by a convolutional neural network (CNN) are augmented by incorporating
hand crafted features. Such ensemble vector of descriptors is used afterwards to identify true lesion candidates using
a Random Forest classifier.
Results: We empirically observed that combining both sources of information significantly improve results with
respect to using each approach separately. Furthermore, our method reported the highest performance on a per-lesion
basis on DIARETDB1 and e-ophtha, and for screening and need for referral on MESSIDOR compared to a second
human expert.
Conclusions: Results highlight the fact that integrating manually engineered approaches with deep learned features is
relevant to improve results when the networks are trained from lesion-level annotated data. An open source implemen-
tation of our system is publicly available at https://github.com/ignaciorlando/red-lesion-detection.
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1. Introduction

One of the most common consequences of vascular
damage due to diabetes mellitus is Diabetic Retinopathy
(DR), which is one of the leading causes of preventable
blindness in the world (Prokofyeva and Zrenner, 2012).
As the prevalence of diabetes worldwide is expected to
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increase from 2.8% to 4.4% from 2000 to 2030, and
about 5% of people with Type-2 diabetes have DR, it
is expected that the number of patients suffering from
this disease will significantly increase in the next years
(Abràmoff and Niemeijer, 2015).

One of the earliest signs of DR are microaneurysms
(MAs), which are balloon-shaped deformations on the
vessel walls, induced by the permeability of the vas-
culature due to hyperglycemia (Mookiah et al., 2013).
While DR progresses, the number of MAs increases,
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Figure 1: Examples of red lesions observed in fundus photographs
from DIARETDB1 (Kauppi et al., 2007).

and some of them can break and produce leakages of
blood on the retinal layers, namely hemorrhages (HEs)1.
The most commonly used term to refer to both MAs
and small HEs is “red lesions” (Niemeijer et al., 2005,
Decencière et al., 2013, Seoud et al., 2016). The accu-
mulation of blood or lipids induce swelling, which can
result in retinal damage when it reaches the macula and,
potentially, blindness (Abràmoff et al., 2010).

In its early stages, DR might be clinically asymp-
tomatic (Abràmoff et al., 2010). As a consequence,
this condition is typically identified when it is more
advanced and treatments are significantly less effective
(Mookiah et al., 2013). A recent study has shown that
44% of hospitalized patients with diabetes remain undi-
agnosed (Kovarik et al., 2016). To prevent this, people
suffering from diabetes are usually recommended to be
regularly examined through fundus images to verify the
non-existence of red lesions (Abràmoff et al., 2010). Al-
though fundus photographs are currently the most eco-
nomical non-invasive imaging technique for this pur-
pose, manual diagnosis requires an intensive effort to
screen the images (Mookiah et al., 2013). Red lesions
appear as small red dots that might be subtle and too
small to be detected at first glance (Figure 1). Large
HEs, on the contrary, are more evident and less difficult
to visualize.

Automated methods for computer-aided diagnosis
are known to significantly reduce the time, cost, and
effort of DR screening: their high throughput ensures
the more efficient analysis of large populations (Sánchez
et al., 2011). They also reduce the intra-expert vari-
ability, which is commonly high due to the small size
and the irregular shape of the lesions (Abràmoff and
Niemeijer, 2015). These systems are usually aided by
an automated module for red lesion detection. In gen-
eral, the problem of red lesion detection is tackled using
a two-stage approach, consisting first of detecting a set
of potential candidates, and then refining this set with a
classifier trained using hand crafted features (Niemeijer
et al., 2005, Walter et al., 2007, Niemeijer et al., 2010,
Seoud et al., 2016).

1In some clinical literature, the acronym HE stands Hard Exu-
dates. However, we use it here to refer to hemorrhages, in line with
the biomedical computing literature (Seoud et al., 2016).

Convolutional Neural Networks (CNNs) have re-
cently emerged as a powerful framework to solve a large
variety of computer vision and medical image analysis
problems (Krizhevsky et al., 2012, Zheng et al., 2015,
Venkataramani et al., 2016). Such methods are able
to learn features automatically from a sufficiently large
training set, without requiring the manual design of the
filters. CNNs are known to outperform other manu-
ally engineered approaches on a large variety of ap-
plications (Razavian et al., 2014). Their discrimina-
tion ability is usually affected by the amount of avail-
able training data: deeper architectures are known to
be able to learn more discriminative features, although
at the cost of requiring larger data sets to prevent over-
fitting and ensure a proper generalization error (Good-
fellow et al., 2016). Image level annotations of large
scale data sets can be obtained in a relatively econom-
ical way (Trucco et al., 2013). However, labeling im-
ages at a lesion level is costly, tedious and time con-
suming, as it requires the intervention of experienced
experts who must zoom within different areas of the im-
ages to identify every single pathological structure, as
accurately as possible. This fact significantly influences
the performance of deep learning based approaches for
red lesion detection, which must be trained using lesion
level annotated data.

In this study we propose to take advantage of both
deep learned and manual engineered features for red le-
sion detection in fundus photographs. In particular, we
propose to learn a first set of discriminative features us-
ing a light CNN architecture, and then augment their
original characterization ability by incorporating hand
crafted descriptors. These ensemble vectors of features
are used to train a Random Forest classifier that is ap-
plied at test time to discriminate between true and false
lesion candidates. We experimentally observed that the
deep learned features are complementary to the manu-
ally engineered, and are aided by the incorporation of
domain knowledge.

1.1. Related works

Deep learning methods for DR screening have signifi-
cantly attracted the attention of the research community
after the release of the Kaggle competition database,2

which provides a large amount of fundus photographs
with image-level annotations. Recently, Gulshan et al.
(2016) have presented a CNN that achieved impressive
performance for detecting patients with moderate/worse
and severe/worse DR. The output of such a method is a

2https://kaggle.com/c/diabetic-retinopathy-detection
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quantitative indicator of the risk of the patient’s being
at a moderate or advanced stage of DR. Red lesion de-
tection methods, by contrast, are intended to identify
earlier stages of the disease, providing probability maps
that indicate the location of its clinical signs. This fea-
ture allows physicians to visually assess the correctness
of the results, while helping them to achieve a more re-
liable and accurate early diagnosis.

Red lesion detection in fundus photographs have been
extensively explored in the literature, although most of
the existing approaches are based on detecting MAs or
HEs separately, and not both structures simultaneously
(Niemeijer et al., 2010, van Grinsven et al., 2016, Seoud
et al., 2016). Moreover, current existing approaches
are based exclusively on hand crafted features. This is
likely due to the fact that deep learning based methods
have to be trained from large data sets with lesion level
annotations. This setting has direct implications on why
deep learning based models have been ignored for tack-
ling the problem of red lesion detection. One exception
is the method for HEs detection by van Grinsven et al.
(2016). This approach is focused on detecting HEs at
different scales, which are in general more evident than
MAs. By contrast, our method is used for detecting both
MAs and small HEs simultaneously, which are more
difficult to be visually assessed by physicians.

As mentioned above, in this study we present an en-
semble approach that improves the features learned by
a CNN by incorporating domain knowledge. Only few
efforts have been made in the literature to analyze the
viability of such an approach. Annunziata and Trucco
(2016), for instance, propose to initialize a convolu-
tional sparse coding approach with manually designed
filters to accelerate its learning process and improve
their original discriminative power. That approach is
applied for detecting curvilinear structures such as neu-
rons or retinal vessels, which are easier to manually
trace. Venkataramani et al. (2016) have observed that
state of the art descriptors significantly improve the per-
formance of transferred CNN features when applied to
kidney detection in ultrasound images. The main dif-
ference with respect to our approach is that our CNN is
trained from scratch from a domain specific data set,
while the approach of Venkataramani et al. (2016) is
based on fine-tunning a CNN trained from natural im-
ages.

From our literature review, we identified two main
methods resembling our approach, although with dif-
ferent applications and based on different CNN archi-
tectures. Zheng et al. (2015) introduce a method for
identifying landmarks in 3D CT scans using the out-
put of a dedicated CNN in combination with Haar fea-

tures to boost the quality of the results. Its deep learn-
ing based component is divided into two stages: a first
stage, based on a light architecture with only one hid-
den layer, is used to recover a large set of landmark
candidates; the second stage, made up of three hidden
layers and trained using sparsity priors, is used to re-
cover a large vector of neural network features, which
is combined with Haar features to train a probabilistic
boosting-tree classifier. In order to save as much data
as possible for training the CNN and the lesion clas-
sifier, we avoided performing candidate detection in a
supervised way. Instead, a combination of morphologi-
cal operations and image processing techniques is used
to retrieve potential lesions, without using training data.
This allows us to train a slightly deeper architecture in
the subsequent stage, only dedicated to classifying the
lesion candidates, which is able to capture discrimina-
tive features from the training patches.

The method by Wang et al. (2014) for mitosis detec-
tion on histopathology images is also similar to ours.
It uses candidate detection as well, and a RF classifier
trained using hand crafted features is applied to assign a
probability of being a true mitosis candidate. In parallel,
a CNN with two convolutional layers and one fully con-
nected layer is trained from patches around the candi-
dates to retrieve an additional probability. The final de-
cision is performed via consensus of the predictions of
the two classifiers by weighting both probabilities using
two manually tuned parameters. We took the alternative
approach of using both feature vectors simultaneously
to train the RF classifier, as it can take advantage of the
interaction between both the deep learned and the hand
crafted features.

1.2. Contributions

In this paper we propose to learn discriminative mod-
els for red lesion detection by combining both deep
learned and hand crafted features. First, an unsuper-
vised, candidate detection approach based on morpho-
logical operations is applied to retrieve a set of potential
lesions. Next, a CNN is trained from a set of patches
around the candidate lesions to learn a first feature vec-
tor. These descriptors are augmented with a set of hand
crafted features to improve their ability to distinguish
the true positive lesions. A Random Forest (RF) clas-
sifier is trained using this hybrid feature vector, and is
then applied for refining the set of candidates, discrimi-
nating between true lesions and false positives. We em-
pirically observed that combining both sources of in-
formation improved performance not only when eval-
uating our method on a per-lesion basis but also when
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analyzing its potential for DR screening or need for re-
ferral detection on an image-level basis. Our results on
benchmark data sets such as e-ophtha (Decencière et al.,
2013), DIARETDB1 (Kauppi et al., 2007) and MESSI-
DOR (Decencière et al., 2014) show that our strategy
outperforms other state of the art methods that are not
only based on red lesion detection but also in detecting
other pathological structures such as exudates or neo-
vascularizations. An extensive analysis of the comple-
mentarity of the deep learned features with respect to
the hand crafted ones is also provided, with the purpose
of assessing their contribution in the discrimination pro-
cess.

2. Methods

A schematic representation of our method is depicted
in Figure 2. Lesion candidates retrieved with morpho-
logical operations (Section 2.1) are filtered using a set
of hybrid descriptors. Regular patches centered on each
candidate connected component are collected to build a
training set that is used to train a CNN (Section 2.2).
A 63-dimensional vector of hand crafted features (Sec-
tion 2.3) is also computed per each of the candidates.
A Random Forest (RF) classifier (Section 2.4) is after-
wards trained on the resulting combination of features,
and used to classify the new candidates. Since the pres-
ence of red lesions is the first indicator of DR, the max-
imum over lesion likelihoods is used to assign a DR
probability, as done by Seoud et al. (2016) and Antal
and Hajdu (2012).

2.1. Candidate detection

Our strategy for candidate detection is illustrated in
Figure 3. First, the green band G from the original color
image I is taken, since it is the one that allows a bet-
ter visual discrimination of the red lesions. To avoid
artifacts in the borders of the FOV that might hide po-
tential lesions (Figure 4(b)), a wider aperture of 3

30X

pixels is simulated (Soares et al., 2006) from G, where
X corresponds to the width in pixels of the field of view
(FOV). Since our purpose is to develop a system suffi-
ciently general to be applied at different image resolu-
tions, all the relevant parameters are expressed in terms
of X.

As uneven background illumination might hide po-
tential lesions occurring within the darkest areas of the
images, a r-polynomial transformation is applied on

pixel intensities:

IW(i, j) =


1
2 (umax−umin)

(µW (i, j)−min (G))r , G(i, j) ≤ µW (i, j)

− 1
2 (umax−umin)

(µW (i, j)−max (G))r , G(i, j) > µW (i, j)

(1)

with r = 2, umin = 0 and umax = 1, respectively,
and where µW is the local average intensity on square
neighborhoods of length W, computed for each (i, j)
pixel (Walter et al., 2007). We observed that using W =

25 performed sufficiently well for enhancing images
with 536 pixels of horizontal resolution such as those
in the DRIVE data set (Niemeijer et al., 2004), so this
parameter is automatically adjusted using W = 25

536X.
Figure 4 illustrates how the expansion of the FOV bor-
der and the subsequent intensity transformation improve
the contrast of subtle lesions located in the border of the
FOV.

A Gaussian filter with σ = 5is applied to IW to re-
duce noise, resulting in a new image I′W. Afterwards,
different morphological closings are performed on I′W
using linear structuring elements of length l ∈ L at an-
gles θ spanning from 0 to 180◦ with increments of 15◦.
The set of relevant scales L is a fixed parameter that is
also automatically adjusted in terms of X, as explained
in Section 3.2. By taking the minimum response over
all the considered angles, an image I(l)

closed is obtained
in which responses to lesions with sizes smaller than l
were reduced, and all the remaining structures are still
preserved (Walter et al., 2007). A score map is then ob-
tained by:

I(l)
cand = I(l)

closed − IW. (2)

Afterwards, a thresholding operation is applied on I(l)
cand,

where the threshold is automatically determined in such
a way that a maximum of K = 120 candidates are re-
trieved from the score map. In order to achieve this
goal, thresholds ts from min (I(l)

cand) to max (I(l)
cand) with

increments of 0.002 are explored until the number of
connected components in the resulting binary maps is
less than or equal to K. To support the cases in which
no lesions are detected or when is not possible to detect
less than K candidates, a lower bound tl and an upper
bound tu are experimentally set such that:

tK =


tl, ∀ts : CC(I(l)

cand > ts) < K
tk, CC(I(l)

cand > ts) ≤ K
tu, ∀ts : CC(I(l)

cand > ts) > K
(3)

where CC is a function than counts the number of con-
nected components in the thresholded score map. Once
tK is fixed, a binary map of candidates is obtained by
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Figure 2: Overview of our method for red lesion detection.

Figure 3: Red lesion candidate detection. See Section 2.1 for a detailed description of the process.

(a) Original RGB
image

(b) IW from G (c) IW from
expanded G

Figure 4: Effect of the FOV expansion on the lesion candidates located
closely to the border of the FOV.

thresholding BWl = I(l)
cand > tK (Walter et al., 2007).

This operation is repeated for different values of l ∈ L to
capture potential lesions at different scales, so the binary
map of candidates BW is obtained as BW =

⋃
l∈L BWl.

Finally, as BW might include small candidates which
usually are not associated to any pathological region but
with noise, all connected structures in BW with less than
px pixels are discarded. The automated model selection
procedure used to set the values of K and px and the
scales in L is described in Section 3.2.

Figure 5 presents a random sample of the potential
lesions retrieved by the method on a randomly selected

image from DIARETDB1 training set. It is possible to
see that most of false positive samples correspond to
vascular branching or crossing points, vessel segments
and beadings, scars due to laser photocoagulation or
black spots of dirt in the capture device, as reported by
Seoud et al. (2016). This setting underlines the impor-
tance of refine the candidates to remove false positives.

2.2. CNN-based features
We train a dedicated CNN to characterize each red

lesion candidate. For this purpose, each color band of
the original image I is equalized first as proposed by van
Grinsven et al. (2016):

Ice(i, j;σ) = α·I(i, j)+τ·Gaussian(i, j;σ)∗I(i, j)+γ (4)

where ∗ is a convolution, the Gaussian filter has a stan-
dard deviation σ = X

30 , and α = 4, τ = −4 and γ = 128
were set following van Grinsven et al. (2016). We
empirically observed that this preprocessing operation
not only dramatically diminishes the number of epochs
needed for training but also improves the discrimination
ability of the CNN. As explained in Section 2.1, a wider
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FOV is also simulated for each color band to prevent
any undesired effect in the FOV border.

A training set S = {(X(i), y(i))}, i = 1, ..., n is built for
training the CNN, where each sample X(i) is a square
patch around the center of each red lesion candidate, as
extracted from Ice (Figure 5). The patch size is taken
as double the length of the major axis of the candidate,
or 32 × 32 pixels if the major axis of the candidate is
smaller than 32 pixels. This setting let us to recover not
only the candidate itself but also its surrounding area,
which allows the CNN to capture both candidates’ in-
ternal features and information about its shape, borders
and context. Patches larger than 32×32 pixels are down-
sized to this resolution to ensure a uniform input size
for the CNN. As windows are square by definition, this
transformation is isotropic and does not affect the ap-
pearance of the lesion candidate. Samples are centered
by subtracting the training set mean image. Alterna-
tive scaling methods such as ZCA whitening and con-
trast normalization were also analyzed, although no im-
provements were observed on the validation set when
applying them. The label y(i) ∈ {0, 1} associated to the
candidate is assigned according to the ground truth la-
beling on the data set: if the candidate overlaps with a
true labeled region, then the window is assumed to be a
true red lesion (y = 1); if it does not, then it is assumed
to be a false positive (y = 0). The CNN is trained from
scratch on an 8x augmented version of this training set,
which is obtained by rotating each patch by 90◦, 180◦ or
270◦, and then flipping the resulting windows horizon-
tally or not. Thus, for each input patch, 8 new patches
are generated.

The CNN architecture is depicted in Table 1. It
comprises 4 convolutional layers and 1 fully connected
layer with 128 units. This layer is used to retrieve
the N = 128-dimensional vector of deep learned fea-
tures. The CNN was designed by using the original
LeNet architecture as the initial baseline, and introduc-
ing changes by evaluating their contribution on reducing
the empirical error on a held-out validation set, which
was randomly sampled from the training set. Using
deeper architectures such as VGG-S or Inception-V3
was avoided as the increase in the number of parame-
ters would have required a larger training set to reduce
overfitting.

Depending on the number of images in the training
set with an advanced level of DR and the size of the le-
sions we focus on detecting, the classification problem
is imbalanced to a greater or lesser degree. Hence, the
proportion of true positive lesions might be significantly
smaller that the number of false positive ones. If this im-
balance grows dramatically, it was previously observed

(a) Non-lesions (false positive candidates)

(b) Lesions (true positive candidates)

Figure 5: CNN training set. Random sample of 200 patches for (a)
non lesions and (b) true lesions. See Section 2.2 for details of the
construction of the training set.

that the typical cross-entropy loss is affected, and, as a
consequence, fewer true positives are retrieved (Mani-
nis et al., 2016). Thus, we used a class balanced cross-
entropy loss, given by:

Lβ(W) = − β
∑
i∈Y+

log P(y(i)|X(i); W) (5)

− (1 − β)
∑
i∈Y−

log P(y(i)|X(i); W))

where W are the weight parameters of the network; P is
the probability obtained by applying a sigmoid function
to the activation of the fully connected layer; Y+ and
Y− are the subsets of true and false positive samples,
respectively; and β = |Y−|/(|Y+| + |Y−|) is the ratio of
negative vs. positive samples in S .

The CNN’s weights were randomly initialized from a
Gaussian distribution with a lower standard deviation
for the first layer (0.01) than for the remaining ones
(0.05), to prevent vanishing gradients. Standard dropout
after all the convolutional layers was analyzed as an al-
ternative to the reported architecture, although it was
observed that it did not improve results on the valida-
tion set. Moreover, using such an approach increased
the training time significantly. We noticed instead that
using dropout after the first convolutional layer with a
high keep probability p = 0.99 slightly improved re-
sults. We also used weight decay of 5 × 10−4 for regu-
larization, to penalize large W values during backprop-
agation. Batch normalization was also evaluated but no
improvements were observed when applying it. The
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Table 1: CNN architecture. Convolutional layers (conv) indicate
width, height and depth of each learned filter. Pooling layers (pool) in-
clude the dimension of the pooling operation and the stride. Dropout
is only applied after the first convolutional layer with a low dropout
probability.

Block Layers Filter size Output size

1
conv 5 × 5 × 3 32

maxpool 3 × 3 - stride = 2
dropout p = 0.01

2 conv 5 × 5 × 32 32
avgpool 3 × 3 - stride = 2

3 conv 5 × 5 × 32 64
avgpool 3 × 3 - stride = 2

4 conv 4 × 4 × 64 N
5 fully connected N N
6 Lβ(W) N 2

cost function was optimized using stochastic gradient
descent, with a batch size of 100 samples taken from
the training set, which is randomly shuffled at the be-
ginning of each epoch. The learning rate was initially
fixed in η = 0.05, and it was divided by a factor of 2 ev-
ery time that the relative improvement in currentLβ(W)
value was less than 1% of the average loss over the last
10 epochs. The optimization process was stopped when
this relative difference was smaller than 10−4, or a max-
imum number of 200 epochs was achieved. The CNN
was implemented in MATLAB R2015b, using Matcon-
vnet (Vedaldi and Lenc, 2015). To improve perfor-
mance during training, a NVIDIA Titan X GPU card
was used, achieving convergence in 20-30 minutes.

2.3. Hand-crafted feature extraction

As a complementary source of information with re-
spect to the CNN features, a 63 dimensional feature vec-
tor of hand-crafted features (HCF) is extracted per each
lesion candidate and incorporated to our feature vector.
Some of these descriptors were extensively explored in
the literature (Niemeijer et al., 2005, 2010, Seoud et al.,
2016), while other are introduced here to improve the
existing ones. In general, they can be divided into two
categories: intensity based and shape based features
(Table 2).

Intensity features exploit the visual properties of the
candidate areas, and are extracted from different ver-
sions of the color image I, obtained by applying differ-
ent preprocessing strategies. In particular, we extracted
descriptors used in the state of the art (Niemeijer et al.,
2010, Seoud et al., 2016) but from the following derived
images:

• Original red, green and blue color bands (R, G and
B, respectively).

• Green band G after illumination correction (IW , ob-
tained as in Section 2.1).

• Color bands and IW after CLAHE contrast en-
hancement (Rc, Gc, Bc, IW c).

• Color bands after color equalization (Rce, Gce, Bce).

• ISC, which is the difference between the green band
G and an estimated background IBG, obtained us-
ing a median filter with squared windows of length
25
536X.

• Imatch. This image is obtained by initially comput-
ing Ilesion, which is a vessel free version of ISC, ob-
tained by inpainting the vasculature as in (Orlando
et al., 2017b). The difference between each pixel
(i, j) in Ilesion and its 11 × 11 neighborhood is as-
signed to Imatch(i, j).

• Icand = maxl I(l)
cand, which is the maximum re-

sponse to the candidate score map described in
Section 2.1, taken from IW , but restricting the
size of the structuring elements to the lengths l ∈
{5, 7, ..., 15}.

Shape based features have the ability to characterize
the structure of the candidates. Red lesions are expected
to be relatively circular, with small area and perimeter,
and approximately equal minor and major axis. Such
statistics, including compactness, eccentricity and as-
pect ratio, are also included as part of the domain knowl-
edge feature vector.

We also analyzed the viability of using the segmenta-
tion of the retinal vasculature as a potential source of in-
formation. As seen in Figure 5(a), most of the false pos-
itive detections are located in vessel crossings or bead-
ings. Thus, we compute an initial vessel segmentation
using the method reported in (Orlando and Blaschko,
2014, Orlando et al., 2017a), and postprocessing the
output by removing every spurious connected compo-
nent with less than 100

536X pixels Orlando et al. (2017b).
A morphological closing with a disk of radius 2 is af-
terwards applied to fill any gap due to the central reflex
in arteries. Then, we measure the ratio of pixels in the
candidate region that overlap with the segmentation, di-
vided by the number of pixels in the candidate. Figure 6
illustrates the process of computing this feature. It can
be seen that most of the false positive lesions located
at the optic disc overlap with the resulting segmentation
mask, and can be removed by this descriptor.
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Table 2: Summary of the hand crafted features used to complement our CNN. Top: intensity based features. Bottom: shape based features.
Intensity based features (dimensionality) Extracted from

Average intensity value in the candidate region. (13) R, G, B, IW , Rc, Gc, Bc, IW c,
Rce, Gce, Bce, ISC,Itop-hat

Sum of intensities in the candidate region. (12) R, G, B, IW , Rc, Gc, Bc, IW c,
Rce, Gce, Bce, ISC

Standard deviation of intensities in the candidate region. (12) R, G, B, IW , Rc, Gc, Bc, IW c,
Rce, Gce, Bce, ISC

Contrast: Difference between mean intensity in the candidate region and mean intensity of
the dilated region (12)

R, G, B, IW , Rc, Gc, Bc, IW c,
Rce, Gce, Bce, ISC

Normalized total intensity: Difference between total and mean intensities of the candidate
area in IBG, divided by the candidate’s standard deviation in IBG. (3) G, ISC, IW

Normalized mean intensity: Difference between mean intensity in IW and mean intensity of
the candidate area in IBG, divided by the standard deviation of the candidate in IBG. (1) IW

Minimum intensity in the candidate area. (1) Imatch

Shape based features (dimensionality) Extracted from
Area: Number of pixels of the candidate. (1) BW
Perimeter: Number of pixels on the border of the candidate. (1) BW
Aspect ratio: Ratio between the major and minor axis lengths. (1) BW
Circularity = 4πArea/Perimeter2. (1) BW

Compactness =

√
(
∑n

j=1 d j − d̃)/n, where d j is the distance from the centroid of the object to

its jth boundary pixel and d̃ is the mean of all the distances from the centroid to all the edge
pixels. n is the number of edge pixels. (1)

BW

Major axis of the ellipse that has the same normalized second central moments as the candi-
date region. (1) BW

Minor axis of the ellipse that has the same normalized second central moments as the candi-
date region. (1) BW

Eccentricity of the ellipse that has the same second-moments as the candidate region. The
eccentricity is the ratio of the distance between the foci of the ellipse and its major axis length.
(1)

BW

Ratio of the pixels on the candidate region that are also included in the binary segmentation
of the retinal vasculature, obtained as in (Orlando et al., 2017b). (1) Vessel segmentation
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(a) (b) (c)

(d) (e)

Figure 6: Feature based on vessel segmentation. (a) I. (b) I with
candidates superimposed. (c) Vessel segmentation. (d) Vessel seg-
mentation after removing spurious elements. (e) Vessel segmentation
after morphological closing.

2.4. Candidate classification with Random Forest

A Random Forest (RF) is an ensemble classifier that
is widely used in the literature due to its capability to
perform both classification and feature selection simul-
taneously (Breiman, 2001, Lo Vercio et al., 2017). It is
also robust against overfitting, which is relevant when
having small training sets, and is suitable to deal with
noisy, high dimensional imbalanced data. We trained
this classifier for the purpose of refining our set of can-
didates using our hybrid feature vector. In all our ex-
periments, we standardized the features to zero mean an
unit variance.

A RF is a combination of T decision trees. These
trees are learned from T examples that are randomly
sampled with replacement from our training set S . Each
node in a tree corresponds to a split made using the best
of a randomly selected subset of m =

√
d features, with

d being the dimensionality of the feature vector. The
quality of the split is given by the decrease in the Gini
index that the split produces (Breiman, 2001). Given
a feature vector x( j), the RF evaluates the conditional
probability pi(c|x( j)), where c ∈ {−1, 1} is the class–with
-1 corresponding to a non lesion and 1 to a true lesion–
and i is the index of the tree in the forest. The final
probability is then computed by repeating this process
for every tree 0 < i ≤ T , and averaging the responses of

Table 3: Distribution of DR grades in the MESSIDOR data set, and
diagnostic criterion. MA = microaneurysms, HE = hemorrhages and
NV= neovascularizations.

Grade Criteria Num. images
R0 (NMA = 0) AND (NHE = 0) 546
R1 (0 < NMA ≤ 5) AND (NHE = 0) 153
R2 (5 < NMA < 15) AND (0 < NHE < 5) AND (NNV = 0) 247
R3 (NMA ≥ 15) OR (NHE ≥ 5) OR (NNV > 0) 254

each of them:

p(c|x( j)) =
1
T

T∑
i

pi(c|x( j)) (6)

In order to determine the probability P of the image
I corresponding to a DR patient or not, we followed the
same procedure used by Seoud et al. (2016):

P(I) = max
j

p(c = 1|x( j)), (7)

which means that for a given image I with m lesion can-
didates, the probability of being DR will be associated
with the maximum certainty of the classifier of having
observed a true positive lesion (c = 1).

3. Experimental setup

3.1. Materials

We conducted experiments using three publicly avail-
able data sets: DIARETDB13 (Kauppi et al., 2007),
e-ophtha4 (Decencière et al., 2013), and MESSIDOR5

(Decencière et al., 2014)
DIARETDB1 and e-ophtha were used to perform a

per-lesion evaluation as they provide lesion level anno-
tations. MESSIDOR provides image level annotations
indicating the DR grade, assigned using the criterion
detailed in Table 3. Thus, this set was used to quantify
the performance of our method as a DR screening tool,
on a per-image basis. We also used e-ophtha for this
purpose, by generating image-level annotations based
on the number of red lesions in the ground truth seg-
mentation. Thus, any image with at least one red lesion
was labeled as DR. The ROC6 (Niemeijer et al., 2010)
training set, which comprises 50 fundus photographs
taken at different resolutions, was used to augment DI-
ARETDB1 training set for small red lesion detection on

3http://www.it.lut.fi/project/imageret/diaretdb1/
4http://www.adcis.net/en/Download-Third-Party/

E-Ophtha.html
5http://messidor.crihan.fr.
6http://webeye.ophth.uiowa.edu/ROC/
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e-ophtha. Further details about the experimental setup
are provided in Table 4.

DIARETDB1 consists of 89 color fundus images
taken under varying imaging settings (Kauppi et al.,
2007). 84 images contain signs of mild or pre-
proliferative DR, and the remaining 5 are considered
normal. The entire set is divided into a training set and a
test set of 28 and 61 images, respectively. Four different
experts have delineated the regions where MA and HE
can be found, and a consensus map is provided per each
type of lesion. The standard practice is to evaluate MA
or HE detection methods at a conservative ≥ 75% agree-
ment (Kauppi et al., 2007). For red lesion detection,
however, Seoud et al. (2016) propose to use as ground
truth the union of the consensus maps for both MAs and
HEs at a > 25% level of agreement. We followed this
latter approach to evaluate our red lesion detection strat-
egy.

e-ophtha (Decencière et al., 2013) is a database gen-
erated from a telemedical network for DR screening,
and it includes manual annotations of MAs and small
HEs. It comprises 148 images with small red lesions,
and 233 with no visible sign of DR. In order to obtain
per-image labels indicating the presence or absense of
DR, images with any red lesion were labeled as DR.

Finally, MESSIDOR (Decencière et al., 2014) com-
prises 1200 color fundus images acquired by 3 oph-
thalmic institutions in France. Images were originally
captured at different resolutions, and graded into four
different DR stages, being R0 the healthy category and
R3 the most severe. Two different classification prob-
lems are usually derived from MESSIDOR grades: DR
screening, which corresponds to distinguishing R0 from
the remaining R1, R2 and R3 grades (Antal and Hajdu,
2012, Seoud et al., 2016); and detecting the need for
referral, which corresponds to R0 and R1 vs. R2 and
R3 grades (Sánchez et al., 2011, Pires et al., 2013). We
evaluated our method on a per image basis following
these two approaches.

Since these data sets do not include FOV masks,
which are necessary for processing the images, we auto-
matically generate them by thresholding the luminosity
plane of the CIELab version of the RGB images at 0.15
(for DIARETDB1, e-ophtha and MESSIDOR) and 0.26
(for ROC) (Orlando et al., 2017b). If the resulting bi-
nary mask is such that the entire image is estimated as
a foreground, an alternative approach is applied where
the RGB bands are summed up and the resulting image
is thresholded at an empirically tuned value of 150. To
smooth borders and reduce noise, all masks are post-
processed with a median filter using square windows
of side 5, and only its largest connected component is

preserved. In principle, these masks would be avail-
able directly from the fundus camera, and the process
of replicating this information directly from the images
is a necessary but not central task to the present paper.
The FOV masks for all the data sets used in this paper
are released in the project webpage (Section 6).

3.2. Model selection
Candidate detection relies on three significant param-

eters: L, which is the set of scales used to retrieve
potential candidates; K, the number of candidates re-
trieved for a given scale; and px, the minimum area
in pixels that a candidate must have. In our experi-
ments, these values were experimentally adjusted us-
ing the DIARETDB1 training set, resulting in L =

{3, 6, 9, . . . , 60}, K = 120 and px = 5. The maximum
scale from L was adapted on the remaining data sets us-
ing a scaling factor of X

1425 , where 1425 is the average
width of the images in DIARETDB1. This allows to re-
cover a set of candidates with a size proportional to the
resolution of each image.

The parameters of the CNN (in particular, dropout
probability 1 − p and the size of the fully connected
layer N) were designed according to the performance on
a held out validation set, randomly sampled from each
training set. The parameters that maximized the area un-
der the precision/recall curve (N = 128 and p = 0.99)
were always used for evaluation on the test set. The
number of trees T ∈ {100, 120, ..., 200} for the RF was
fixed to the value that minimized the out-of-bag error
on the training set on each experiment (Breiman, 2001).
The maximum number of possible trees was fixed to a
relatively low value (200) to reduce the computational
cost during training and prediction. Nevertheless, ex-
periments adding up to 2000 trees to the model did not
show any improvements in reducing the out-of-bag er-
ror.

3.3. Evaluation metrics
Free-response ROC (FROC) curves were used to

evaluate the performance of our red lesion detection
method on a per lesion basis. These plots, which are
extensively used in the literature to estimate the over-
all performance on this task, represent the per lesion
sensitivity against the average number of false positive
detections per image (FPI) obtained on the data set for
different thresholds applied to the candidate probabili-
ties. Thus, FROC curves provide a graphical represen-
tation of how the model is able to deal with the detec-
tion of true lesions in all the images of the data set. We
also computed the Competition Metric (CPM) as pro-
posed in the Retinopathy Online Challenge (Niemeijer
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Table 4: Experimental setup. β is the value for the balanced cross-entropy loss (Equation (5)).
Exp.
ID Detection Training set GT labels True

lesions
Non

lesions β
Per lesion
evaluation

Per image
evaluation

1
Red lesions

with multiple
sizes

DIARETDB1
training set (28

images)

MA > 25% ∪
HE > 25 %

1059
(27%)

2905
(73%)

β =

0.5
DIARETDB1

test set MESSIDOR

2 Small red
lesions

DIARETDB1 &
ROC training sets

(78 images)

MA > 75% from
DIARETDB1 &
ROC MA labels

407 (4%) 10282
(96%)

β ∼
0.96 e-ophtha e-ophtha

et al., 2010), which is the average per lesion sensitivity
at the reference FPI values ∈ {1/8, 1/4, 1/2, 1, 2, 4, 8}.
The protocol used by Seoud et al. (2016) was followed
when evaluating in DIARETDB1, as indicated in Sec-
tion 3.1.

When evaluating on a per image basis, we used stan-
dard ROC curves, where both the sensitivity (S e =

T P
FN+T P ) and 1 − specificity (S p = T N

FP+T N ) are depicted
within the same plot for different DR probability values,
obtained as indicated in Equation 7. Additionally, we
studied the S e at S p = 50%, which is a standard com-
parison metric for screening systems (Sánchez et al.,
2011).

4. Results

4.1. Per lesion evaluation
Two different experiments were conducted for per le-

sion evaluation, as detailed in Table 4. FROC curves are
used for comparison, and Wilcoxon signed rank tests
were performed to estimate the statistical significance
of the differences in the per lesion sensitivity values.
These tests were conducted using 100 sensitivity values
retrieved for logarithmically spaced FPI values in the
interval [ 1

8 , ..., 8], which corresponds to a more dense
version of the reference FPI values used for computing
the CPM (Niemeijer et al., 2010).

Experiment 1 evaluates the model ability to deal with
both MAs and HEs simultaneously at multiple scales,
following the same protocol as Seoud et al. (2016) (Fig-
ure 7). Results obtained by Seoud et al. (2016) were
provided by the authors and obtained using the same
training and test configuration, and are included for
comparison purposes. Hypothesis tests show a statisti-
cally significant improvement in the per lesion sensitiv-
ity values when using the combined approach compared
to using each representation separately (p < 2 × 10−18

and p < 4 × 10−17 for the CNN probabilities and the
hand crafted features, respectively). Moreover, the hy-
brid method reported better results compared to Seoud
et al. (p < 2 × 10−18).

As DIARETDB1 includes labels for both MAs and
HEs, it is possible to quantitatively assess the accuracy

Figure 7: Per lesion evaluation in Experiment 1. FROC curve and
CPM values obtained on the DIARETDB1 test set.

of the method to detect each type of lesion. Figure 8
illustrates the FROC curves and the CPM values ob-
tained by the models learned in Experiment 1, when an-
alyzing MAs and HEs separately. For MA detection,
the combined approach achieves higher per lesion sen-
sitivity values than using each approach separately (p <
2×10−18 and p < 3×10−17 for the hand crafted features
and the CNN, respectively), with a noticeable improve-
ment at the clinically relevant FPI=1 value (0.2885 ver-
sus 0.202 and 0.2 for combined, CNN, and hand crafted,
respectively). Moreover, the differences between the
manually tuned approach and the CNN probabilities are
not statistically significant. When evaluating the ability
of the system to detect HEs on the DIARETDB1 test set,
it is possible to see that the per lesion sensitivities are
higher than those reported for MA detection. Further-
more, the hand crafted features are able to achieve better
per lesion sensitivity values than the combined approach
(p < 5×10−5) for this specific task. At the clinically rel-
evant FPI value of 1, however, the combined approach
reports a slightly higher per lesion sensitivity compared
to the manually engineered descriptors (0.4907 versus
0.4724).

Experiment 2 was carried out on e-ophtha to estimate
the ability of our method to segment MAs and smaller
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(a) Microaneurysms

(b) Hemorrhages

Figure 8: Per lesion evaluation for each lesion type in the DI-
ARETDB1 test set: (a) Microaneurysms, (b) Hemorrhages.

HEs simultaneously. In this case, a combination of both
the DIARETDB1 (MA labels with a level of agreement
≥ 75%) and ROC training sets was used for learning, as
we observed that few MAs (only 182 for the entire DI-
ARETDB1 set) are retrieved at ≥ 75% agreement. To
the best of our knowledge, the only method evaluated on
e-ophtha is by Wu et al. (2017), although their analysis
is performed on a subsample of 74 images with lesions
instead of the full data set. By contrast, we used a more
challenging evaluation comprising the entire e-ophtha
set, including also the 233 images with no visible sign
of DR. Figure 9 presents the FROC curves obtained us-
ing each approach. As in the previous experiment, the
Wilcoxon signed rank tests showed a statistical signif-
icant improvement in the per lesion sensitivity values
using the hybrid vector of both deep learned features
and domain knowledge with respect to the CNN proba-
bilities and the hand crafted features (p < 2× 10−18 and
p < 2 × 10−9, respectively).

Table 5 summarizes the CPM values obtained for
each experiment and each feature combination, and also
using each of the two recently published state-of-the-art
methods. Per lesion sensitivities at FPI= 1, which is

Figure 9: Per lesion evaluation in Experiment 2. FROC curve and
CPM values obtained on e-ophtha.

Table 5: CPM values and per lesion sensitivities at FPI= 1 for Ex-
periments 1 (red lesions with multiple sizes) and 2 (small red lesions)
(Table 4).

Method Experiment 1 Experiment 2
CPM S e CPM S e

Seoud et al. (2016) 0.3540 0.3462 - -
Wu et al. (2017) - - 0.2729 0.2450

CNN probabilities 0.3756 0.3621 0.3057 0.2894
RF with HCF 0.4517 0.4601 0.3558 0.3291

RF with CNN + HCF 0.4874 0.4883 0.3683 0.3680

considered a clinically relevant number of false posi-
tives (Niemeijer et al., 2010) are also provided.

Finally, qualitative results for a randomly selected
image in the DIARETDB1 test set are depicted in Fig-
ure 10. Green circles are detected lesions according
to the ground truth labeling provided in the data set,
while yellow circles correspond to lesions detected by
our method but that are not labeled in the ground truth.
Finally, red circles surround the lesions that were man-
ually annotated as true lesions but were ignored by the
method. Qualitatively, many of the yellow circles ap-
pear to be microaneurysms or hemorrhages that were
not detected during manual labeling due to their subtle
appearance in the original RGB image.

4.2. Per image evaluation
Two different experiments were conducted on MES-

SIDOR to estimate the performance of our method on a
per image basis, one focused on detecting patients with
DR, and a second based on detecting those need for im-
mediate referral to a specialist. In both cases, we used
the model learned from Experiment 1.

Figure 11(a) illustrates the ROC curves for DR
screening on MESSIDOR, obtained using our hybrid
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(a) DIARETDB1 test image (b) Ground truth.

(c) Red lesion detection (d) Detail from (c)

Figure 10: Qualitative results. (a) image015 from the DIARETDB1
test set. (b) Ground truth labeling at a > 25% level agreement. (c) Red
lesion detections obtained by thresholding the probabilities at 0.644,
which corresponds to an average FPI value of 1. (d) Detail from (c)
showing lesions unlabeled on the ground truth but identified by our
method.

representation and each of the approaches separately.
CNN results were obtained using the network as a clas-
sifier. A series of Mann-Whitney U tests (α = 0.05)
were performed to study the statistical significance of
the differences in the AUC values (Hanley and McNeil,
1982). CNN features (AUC = 0.7912) perform signifi-
cantly better (p < 1 × 10−3) than hand crafted features
(AUC = 0.7325) for this specific task, and the combina-
tion of both sources of information results in a substan-
tially higher AUC value of 0.8932 (p < 1 × 10−6). Fig-
ure 11(b) shows analogous behavior for detecting pa-
tients that need referral, with the CNN performing better
than the hand crafted features (p < 2 × 10−3), and the
combined approach outperforms both individual tech-
niques (p < 1 × 10−6).

Our combined approach shows an analogous behav-
ior when evaluating on e-ophtha for DR screening, as il-
lustrated in Figure 12. Our combined approach retrieved
a significantly higher AUC value (0.9031) than the one
reported by the CNN (AUC = 0.8374, p < 5 × 10−3)
and the RF classifier trained with hand crafted features
(AUC = 0.8812). Hand crafted features perform better
than the CNN for screening in this data set, although the
difference is not statistically significant according to the
Mann-Whitney U test.

A comparison with respect to other state of the art

(a) Performance of DR screening

(b) Performance of detecting patients that need
referral

Figure 11: Per image evaluation. ROC curves for (a) DR screening
(R1 vs. R2, R3 and R4) and (b) need for referral (R1 and R2 vs. R3
and R4) on the MESSIDOR data set.

Figure 12: Per image evaluation on e-ophtha. ROC curve for DR
screening.

strategies is presented in Table 6. The performance ob-
tained by two human experts, as reported by Sánchez
et al. (2011), is also included in the table. The results
of the baseline method by Seoud et al. (2016) were ob-
tained using DIARETDB1 as a training set. The other
methods included are either based only on red lesion de-
tection or complemented by other features such as im-
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Table 6: Comparison of DR screening and need of referral perfor-
mance on the MESSIDOR data set. S e values correspond to those
obtained at a S p = 50%.

Method Screening Need for referral
AUC Se AUC Se

Expert A (Sánchez et al., 2011) 0.9220 0.9450 0.9400 0.9820
Expert B (Sánchez et al., 2011) 0.8650 0.9120 0.9200 0.9760
Antal and Hajdu (2012) 0.8750 - - -
Costa et al. (2016) 0.8700 - - -
Giancardo et al. (2013) 0.8540 - - -
Nandy et al. (2016) - - 0.9210 -
Pires et al. (2015) - - 0.8630 -
Sánchez et al. (2011) 0.8760 0.9220 0.9100 0.9440
Seoud et al. (2016) (DIARETDB1) 0.844 - - -
Vo and Verma (2016) (I) 0.8620 - 0.8910 -
Vo and Verma (2016) (II) 0.8700 - 0.8870 -
HCF 0.7325 0.7645 0.7824 0.8283
CNN 0.7912 0.8471 0.8377 0.9102
HCF + CNN 0.8932 0.9109 0.9347 0.9721

age quality assessment or the detection of exudates and
neovascularizations.

4.3. Feature assessment

In order to assess the visual appearance of the deep
learned features, a graphical representation of the 32
filters of size 5 × 5 × 3 learned on the first layer of
the CNN is presented in Figure 13. These representa-
tions allow to verify which types of high level charac-
teristics are detected by the first layer of the network
(Zeiler and Fergus, 2014). Thus, they are suitable to
confirm if the network was trained for long enough, as
well-trained CNNs usually display smooth filters with-
out noisy patterns, as in this case. From Figure 13(a)
it is possible to see that filters learned in Experiment 1
are mostly descriptors of the color properties of the le-
sions. This setting is in line with the fact that the train-
ing set used in this case contains not only small MAs
but also medium size HEs, which can be more easily
described in terms of their internal color homogeneity
rather than their edges, which significantly varies from
one to another. Other filters are able to capture purple,
ellipsoidal structures corresponding to true lesions like
those illustrated in Figure 5(b). This last type of filter is
more common in the first layer of the CNN learned in
Experiment 2 (Figure 13(b), which might be associated
with the smaller true positive structures observed in the
training set built with ROC and DIARETDB1 MAs.

CNNs can be interpreted as models that transform
the input images into a feature representation in which
classes can be separated by the linear model in the last
layer. The topology of such a space will depend on the
ability of the deep learning features to characterize the
inputs. Hence, if features are sufficiently good to dif-
ferentiate each type of input, at least two well separated

(a) Experiment 1 (b) Experiment 2

Figure 13: Learned filters on the first layer of our CNN, as obtained
for each experiment in Table 4:(a) Experiment 1 (training on DI-
ARETDB1 training set), (b) Experiment 2 (training on DIARETDB1
and ROC training sets).

regions would be visually identified. Due to the high
dimensionality of the feature space, a method is needed
to embed multidimensional vectors in a 2D space, while
preserving the pairwise distances of the points. The t-
distributed stochastic neighbor embedding (t-SNE) was
recently introduced for this purpose (Van Der Maaten,
2014). We followed this approach to study the com-
plementarity of each characterization method, and to
qualitatively assess how their integration contribute to
improve their original discrimination ability. Figure 14
presents the t-SNE mappings of the DIARETDB1 test
samples for each characterization approach and for our
combined feature vector. The CNN descriptors corre-
sponds to those learned in Experiment 1. The figure
also includes a visual representation of the organization
of the patches in the embedding space. In general, it is
possible to see that the ensemble approach groups the
majority of the true positive candidates within a single
neighboring area. By contrast, the individual character-
ization strategies are not able to achieve a single cluster
but rather obtain two–in the case of the deep learned
features–or more–using the hand crafted features.

Detailed regions of the embeddings are depicted in
Figure 15. This allows better visualization of particu-
lar scenarios such as the patches around the true red le-
sions, the false positive candidates located in the vascu-
lar structures, the artifacts due to speckles of dirt in the
lens–which are typical of the images in DIARETDB1–
and the false detections within the optic disc. In gen-
eral, it is possible to observe that CNN features are able
to better characterize the orientation and the visual ap-
pearance of the true lesion candidates, while the hand
crafted features can detect the less obvious lesions un-
der low contrast conditions. The ability of the CNN fea-
tures to discriminate orientations are more evident when
dealing with vascular structures. The hand crafted ap-
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proach, by contrast, is only able to capture the overall
size of the vessels and their intensity properties. When
combining both strategies, the main advantages of each
of them are maintained. The robustness against artifacts
is evident for both the deep learning based and the hand
crafted features, as these false positive candidates are
grouped together into separate clusters from the true le-
sions. A similar behavior is observed when dealing with
false candidates within the optic disc area.

5. Discussion

In general, the integration of both the deep learned
and the hand crafted features significantly improved re-
sults compared to using either approach separately. In a
per lesion evaluation, the combined approach achieved a
consistently higher CPM value both in the e-ophtha and
DIARETDB1 test sets, and also a higher per lesion sen-
sitivity for FPI=1, which corresponds to a clinically rel-
evant number of false positives (Niemeijer et al., 2010).
These values are also higher than those obtained by two
recently published baseline methods that were evaluated
on the same data set. A similar behavior is observed
when evaluating the method on a per image basis. The
combined approach improved the performance obtained
by each characterization approach separately, meaning
that the integration of both sources of information ob-
tains a better characterization of the lesion candidates
and, consequently, a more accurate detection of the indi-
vidual lesions. This is supported by the extensive anal-
ysis presented in Section 4.3. Despite the fact that suf-
ficiently deep CNNs are known to be able to learn any
function of arbitrary complexity, the lack of data with
lesion-level annotations does not allow our network to
identify the same properties that the hand crafted fea-
tures do. Nevertheless, in the analysis of the t-SNE
mapping presented for each method (Figures 14 and 15)
it is possible to see that the CNN has the ability to char-
acterize fine-grained details such as the orientation of
the lesion that are ignored by the manually selected de-
scriptors. On the other hand, the hand crafted features
have the ability to discriminate other low contrast le-
sions (Figure 15), specially hemorrhages (Figure 8(b)).
As a result, the ensemble approach is able to outperform
each individual alternative, improving performance for
detecting both MA and HE simultaneously. Due to the
high cost of accurately annotating small lesions, we hy-
pothesize that this observation will continue to stand in
the near future.

Results on the per image evaluation also showed that
the proposed strategy is able to achieve higher AUC val-
ues than other approaches for DR screening and need-

for-referral detection. Moreover, the methods included
in Table 6 are based not only on red lesion detector (An-
tal and Hajdu, 2012, Giancardo et al., 2013, Seoud et al.,
2016) but also on additional features such as the assess-
ment of the image quality (Sánchez et al., 2011) and/or
the presence of other pathological structures such as ex-
udates and neovascularizations (Sánchez et al., 2011,
Pires et al., 2015, Costa et al., 2016). Compared with
respect to all these approaches, our method achieved
a higher AUC value. Furthermore, it performed better
than the DR grading method by Vo and Verma (2016),
which uses fine tuned CNNs trained on a data set with
50.000 images with image level annotations. An al-
most equal performance was obtained for DR screen-
ing compared with the recently published method by
Quellec et al. (2016), which reported an AUC= 0.893
in the MESSIDOR data set. However, such an approach
uses multiple images per patient, contextual informa-
tion and clinical records to learn diagnostic rules from a
data set with 12.000 examinations. Our method is able
to achieve a slightly higher AUC value without includ-
ing any additional clinical information. Furthermore, a
competitive S e value was obtained in comparison with
Expert B (Sánchez et al., 2011), indicating that this ap-
proach can match the ability of a human observer for
DR screening and detecting patients that need referral.
Thus, our automated red lesion detection system could
be integrated in a more general DR screening platform
to improve the ability to detect DR patients. In par-
ticular, methods such as the one proposed by Gulshan
et al. (2016), which is able to identify moderate/worse
and severe DR cases, can be aided by the incorporation
of a red lesion detection so that the early stages of the
disease can also be determined. Moreover, a reliable
DR likelihood can be complemented by an indication of
the abnormal areas, allowing physicians to better iden-
tify the clinical signs of the disease and to have more
comprehensive feedback from the system. Furthermore,
incorporating other modules for detecting other patho-
logical structures can eventually improve the reported
performance.

It is also important to underline that all the stages in
the proposed method have parameters that are automat-
ically adjusted to each image resolution. Their values,
which are reported in Section 3.2, were empirically se-
lected using different data than that used for evaluation,
and were proportionally scaled in the subsequent exper-
iments to compensate resolution changes. This simple
approach provides an approximate scale invariance that
is valuable to facilitate the adaptability of the method
to be applied on images obtained using different fundus
cameras.
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(a) CNN features (b) Hand crafted features

(c) Combined approach

Figure 14: The t-SNE visualization of the patches from DIARETDB1 test set as mapped using (a) the deep learned features, (b) the hand crafted
features and (c) our hybrid feature vector. Left side: color coded labels for each test sample. Right side: patches around the candidates, as visualized
using the t-SNE mappings. Details for different types of lesion candidates are shown in Figure 15.

When analyzing each individual characterization ap-
proach, it is possible to see in Experiment 1 that both
the RF trained with hand crafted features and the CNN
achieved higher per lesion sensitivities than the method
by Seoud et al. (2016) (p < 2 × 10−18 and p < 2 × 10−4,
respectively). This is likely due to the fact that our
method for extracting candidates differs from the one
used by the alternative approach. Moreover, Seoud et al.
(2016) eliminate the lesion candidates occurring within
an estimated area around the optic disc center, which
is determined using an automated approach. As a con-
sequence, if the diameter of the optic disc is acciden-
tally overestimated by such a method, candidates within
valid regions will be suppressed and it will not be pos-
sible to recover them afterwards during the classifica-
tion stage. As seen in Figures 14 and 15, our com-
bined approach is able to discriminate the candidates
within the optic disc area and the vascular structures.
Hence, instead of using a rigid elimination step based
on optic disc segmentation, we let the classifier to de-
cide whether a candidate is actually a true positive or a
false positive occurring on an anatomical region. This

approach increases the maximum achievable per lesion
sensitivity on each image, allowing to train our classifier
with a larger amount of false positive lesions and to get a
higher sensitivity in test time. A similar observation can
be made from the results of Experiment 2, in which the
hand crafted features and the deep learning based ap-
proach reported higher per lesion sensitivities than those
reported by Wu et al. (2017). It must be underlined,
also, that the Wu et al. (2017) method was trained on
the first half of the images with pathologies on e-ophtha
and evaluated on the second half, rather than trained on
a separate data set and evaluated on the complete set, as
in our case. Moreover, it is worth noting that the images
of the healthy patients were also included during eval-
uation to get a more accurate estimation of its actual
performance on a real, clinical scenario.

On a per image basis, it is possible to see that the
individual approaches trained in Experiment 1 are not
able to achieve AUC values higher than those reported
by Seoud et al. (2016) (Table 6). This is likely due to
the fact that, as indicated by the authors, their method
is more accurate for detecting blot HEs and MAs than
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(a) CNN features (b) Hand crafted fea-
tures

(c) Combined
approach

Figure 15: Details from the t-SNE visualization in Figure 14 for dif-
ferent types of red lesion candidates (true lesions, vascular structures,
speckles of dirt in the lens and false detections in vessel curves in the
optic disc): (a) Deep learned features, (b) Hand crafted features, (c)
Combined approach.

HEs with other shapes. The images in MESSIDOR
were originally graded as R0 and R1 taking into ac-
count the number of MAs (Table 3) (Decencière et al.,
2014). Hence, being more accurate in the detection of
MAs will result in a better ability to distinguish much
earlier stages. When individually using the hand crafted
features or the CNN, both methods are less precise for
detecting MAs but better for discriminating other HEs.
This argument is supported by results presented in Fig-
ure 8, in which it is possible to see that the per lesion
sensitivity values obtained for MA detection are lower
than those reported for HEs. Moreover, it was observed
that the CNN performed equally or better than the RF
trained with manually engineered features on the low
FPI regime for MA detection. This explains the behav-
ior observed in Figure 11, where the CNN probabili-
ties achieved a higher AUC value for DR screening and
need for referral detection. Nevertheless, the combina-
tion of both approaches with the RF classifier consis-
tently improved their individual performance, achieving
a much better characterization of the MAs (as observed
in the improvements reported in Figure 8(a)) and, con-
sequently, a better discrimination of the DR patients.

6. Conclusions

We have proposed a novel method for red lesion
detection in fundus images based on a hybrid vector of

both CNN-based and hand crafted features. A CNN
is trained using patches around lesion candidates to
learn features automatically, and those descriptors are
complemented using domain knowledge to improve
their discrimination ability. Results on benchmark data
sets empirically demonstrated that the resulting system
achieves a new state-of-the-art in this domain, and
that combining both sources of information provides
statistically significant improvements compared to
using each of them separately. A similar behavior is
observed when evaluating our screening system both
for DR and need-for-referral detection, reporting higher
AUC values than those obtained by other existing ap-
proaches based not only on red lesion detection but also
on analyzing other pathologies such as bright lesions
or neovascularizations, or even learning classifiers
using additional clinical information. Considering the
high cost of manually labeling fundus photographs
at a lesion level, our method represents a robust
alternative to improve performance of other deep
learning based approaches. An open source imple-
mentation and the detection masks are made publicly
available at https://github.com/ignaciorlando/
red-lesion-detection.
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José Ignacio Orlando, Elena Prokofyeva, and Matthew B. Blaschko. A
discriminatively trained fully connected conditional random field
model for blood vessel segmentation in fundus images. IEEE
Transactions on Biomedical Engineering, 64(1):16–27, Jan 2017a.
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