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Emmanuel Iarussi · Ignacio Larrabide

Received: date / Accepted: date

Abstract Purpose: In this paper we propose to apply generative adversarial neu-
ral networks trained with a cycle-consistency loss, or CycleGANs, to improve re-
alism in ultrasound (US) simulation from Computed Tomography (CT) scans.
Methods: A ray-casting US simulation approach is used to generate intermedi-
ate synthetic images from abdominal CT scans. Then, an unpaired set of these
synthetic and real US images is used to train CycleGANs with two alternative
architectures for the generator, a U-Net and a ResNet. These networks are finally
used to translate ray-casting based simulations into more realistic synthetic US
images.
Results: Our approach was evaluated both qualitatively and quantitatively. A user
study performed by 21 experts in US imaging shows that both networks signif-
icantly improve realism with respect to the original ray-casting algorithm (p �
0.0001), with the ResNet model performing better than the U-Net (p� 0.0001).
Conclusion: Applying CycleGANs allows to obtain better synthetic US images of
the abdomen. These results can contribute to reduce the gap between artificially
generated and real US scans, which might positively impact in applications such
as semi-supervised training of machine learning algorithms and low-cost training
of medical doctors and radiologists in US image interpretation.
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1 Introduction

Ultrasound (US) is a frequently used medical imaging technique that is extensively
applied as an examination tool for diagnosis, treatment and in emergentology [17].
Compared to other modalities such as X-ray or Computed Tomography (CT), US
imaging is non-invasive, radiation-free and can be acquired in real time using rel-
atively portable and economic devices. In emergency rooms, US is frequently used
to obtain a fast scan of the inner organs, allowing a quick assessment of potentially
damaged areas [2]. US is also widely applied to diagnose pathological alterations of
the abdominal organs, to assess the location of abnormal masses [27], among other
clinically relevant tasks. These images require specially trained readers for their
interpretation, who must discriminate between the variable echogenicity properties
and speckle noise characteristics of the different tissues and imaging artifacts pro-
duced e.g. by the frequency of the US wave. As a consequence, a significant effort
is being made to develop tools for training radiologists both for image acquisition
and interpretation [15].

Medical image simulation is an active field of research that allows to artificially
recreate clinical scenarios with abnormal and/or critical events without any risk,
in a controlled environment and without any patient’s risk. More specifically, US
simulation has been vastly explored as an alternative for training radiologists in
capturing and interpreting US scans [8,19]. Traditionally, training skills such as
recognizing abnormalities require US users to operate a real device and capture
images from volunteers with pathologies [8]. This means that the patient has to
be present during the whole training exercise, which can be stressful or even not
possible in some cases (e.g. under rare conditions or in high risk scenarios). Alter-
natively, US simulators have proved to allow low-cost training of US operators [19].

Generating realistic scans is essential to ensure a smooth transition of human
trainees from US simulations to real US acquisitions, specially for image inter-
pretation. However, current approaches still struggle to produce truthful artificial
scans. Early US simulators partially overcome this difficulty by navigating through
pre-recorded 2D US images [26,12]. These scans were joined into individual vol-
umes and traversed using slice resampling based on the (simulated) transducer
location. However, although images are not synthetic, realism is lost as soon as
the transducer moves away from the original position in the acquired volume.
Moreover, these simulators do not explicitly model other US parameters such as
frequency and gain, so a new volume has to be acquired for each specific configu-
ration. Other recent approaches produce synthetic scans by exploiting geometries
extracted from alternative imaging modalities such as CT [24,15]. These models
are more sophisticated as they intend to recreate the complex interaction of sound
waves coming out from the transducer probe as they traverse the body. However,
as previously described in [23], they struggle to realistically model imaging arti-
facts (e.g. shadows, reverberations, comet tail artifacts, etc.), anatomical features
(e.g. muscle fibers, fat streaks, microcalcifications, etc.) or tissue interfaces. This
is partially because of their hand crafted nature, which force them to explicitly
model every artifact.

Deep learning is currently the state-of-the-art tool for automated medical im-
age analysis in numerous applications, including image segmentation, classification
and synthesis [16]. Generative Adversarial Neural Networks (GANs) [10] are a
specific type of deep neural networks that allows synthesizing new images either
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(a) (b) (c)

Fig. 1: US image simulations of the liver. (a) Ray-casting based simulation. (b)
CycleGAN result. (c) Real US image from approximately the same area.

.

by sampling from a noise distribution [10] or based on an input image [30]. In
this work we focus on this second type of networks, where the output sample is
conditioned by the characteristics of the input. This task is usually referred to in
computer vision as ”image-to-image” translation. The first approach introducing
GANs for this task is the so-called pix2pix [14], which learns to transfer the style
of an image from one domain to another based on paired training samples. Al-
ternatively, Zhu et al. [30] introduced a cycle-consistency loss that allows learning
similar transformations but from unpaired sets of images. This setting reduces the
burden of collecting paired samples for translation, which is extremely expensive
or even unfeasible in medical imaging applications. As a result, this approach has
been successfully applied to translate magnetic resonance images (MRIs) to CT
scans [28,13] and to improve surgical phantoms [9]. To the best of our knowledge,
CycleGANs have not been applied yet in the context of US image simulation.

In this paper we introduce the first approach for realistic patient-specific ab-
dominal US simulation based on a combination of standard ray-casting based sim-
ulation and deep convolutional neural networks (Fig. 1). In particular, we assess
the viability of using GANs trained with a cycle-consistency loss, or CycleGANs,
to improve realism on the outputs of a ray-casting approach [15,23]. We also an-
alyze the architecture influence of the generator in the final outcomes by training
two alternative models based on a U-Net [22] and a ResNet [11], respectively. We
validated our approach through a user study performed over a cohort of experts
in US image analysis. We observed that both architectures allow to improve re-
alism on the output images, with the ResNet reporting the best results. We also
qualitatively evaluate the limitations of our approach and propose further lines of
research to improve them.

2 Methods

Fig. 2 depicts our simulation pipeline. Our inputs are an abdominal CT volume
and a voxel-wise segmentation of the organs. A ray-casting approach (Section 2.1)
is applied on these inputs to retrieve synthetic US images based on the position of
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Abdominal CT
volume

Organ surfaces

(Virtual) Transducer
location

Ray-casting based
US simulation

Kutter et al. 2009
Shams et al. 2008

Intermediate
US simulation

CycleGAN
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Fig. 2: Schematic representation of our US simulation pipeline. A patient-specific
abdominal CT volume and its associated organ segmentations are used as inputs
for a ray-casting based simulator. The resulting scan is used as input for a Cy-
cleGAN, trained with an unpaired set of real US images and other intermediate
ray-casting based simulation, to retrieve a more realistic synthetic US image.

Fig. 3: Ray-casting based simulation. From left to right: (in polar coordinates)
buffers for reflection IR and transmision αT , associated slice from the scattering
volume Is and (in cartesian coordinates) resulting IUS image.

a virtual transducer. A CycleGAN model (Section 2.2) trained on an unpaired set
of these intermediate images and real US scans, is then used to obtain the more
realistic output.

2.1 Ray-casting based simulation

Our first stage consists of a ray-casting algorithm based on the approach presented
in [24,15]. We use our own group implementation [23] that features changes, due
to implementation decisions, with respect to the original implementation. Gen-
erally speaking, ray-casting based simulation models the sound wave movement
through the body to obtain an initial synthetic US image scan with occlusions
and large scale reflections effects (Fig. 3). As a pre-processing, offline step, this
method requires to compute a scattering volume, a 3D representation of the body
in which a different scattering coefficient is assigned to each organ, according to
their (known) tissue properties [24,15]. The interested reader could refer to [5] for
specific details regarding of our implementation of the scattering pre-computation.
A virtual transducer is positioned within this 3D space of both the CT and the
scattering volume. Subsequently, the algorithm computes values for reflection, at-
tenuation and speckle noise of the sound waves casted from the US probe. When
a wave travels in homogeneous tissue and reaches an interface between two media
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with different acoustic impedance, energy is reflected back to the transducer. The
amount of reflected energy is determined using a reflection coefficient, αR, given
by:

αR =

(
Z2 − Z1

Z2 + Z1

)2

(1)

where Z1 and Z2 are the CT Hounsfield unit approximated acoustic impedance
of the different medias, which assumes that there is an approximately linear rela-
tionship between them. This relationship can be derived from different mapping
functions [29,21]. Our implementation uses a direct conversion from Hounsfield
units to acoustic impedance as in [23]. The remaining energy passing through
the interface to the second medium is referred as transmission, αT , obtained as
αT = 1− αR.

The reflection at tissue interfaces is diffuse and subject to scattering. To simu-
late this effect, we used a Lambertian model as in [24,15]. As pointed out in [24],
a Rayleight model would be a better choice since the interface dimensions are
much smaller than a wavelength. Nevertheless, we used a Lambertian model due
to its simpler computational implementation and efficiency. This type of models
assumes the brightness of a surface to be independent from the viewing angle but
dependent on the angle of incidence between the ray and the surface of the organ
to traverse. Therefore, the intensity of the reflected signal can be modelled as:

IR(x) ∝ αR(x)
I2i
I0
|r(x) · n(x)| (2)

where IR(x) is the reflected intensity, r is a unit vector indicating the direction of

the wave, n is the normal to the organ surface and
I2i
I0

is the cumulative attenuation
at the interface, being I0 the initial ray intensity and Ii(x) the intensity at a
location x [24,15]. The speckle pattern and view-dependent effects are modelled
using the scattering image by sampling along the same reflection wave path.

Finally, the synthetic US image IUS at a location x is calculated based on the
reflection, transmission and scattering buffers (Fig. 3) by doing:

IUS(x) = (w1Gσ1(x) · IR(x) + w2Gσ2(x) · αT (x)) Is(x) (3)

where IR(x) and Is(x) are the reflection and scattering images, respectively, w1

and w2 are blending coefficients that are hyperparameters of the method and G
are Gaussian filters with 0 mean and adjustable deviations σ1 and σ2 [24,15]. A
log-compression method is applied at the end to reduce the dynamic range of the
output [23].

2.2 Improving realism with CycleGANs

The aim of our CycleGAN [30] is to translate images from the domain X of all
possible outputs of the ray-casting model to the domain Y of all possible real US
images.

A standard GAN normally consists of two convolutional neural networks, a
generator G : X → Y and a discriminator DY . G is used to translate the input
x to the domain Y –in our case, IUS to its (more) realistic analogue, IyUS–. DY ,
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Fig. 4: Our CycleGAN model for improving US simulation realism.

on the other hand, is used during training to recognize fake images {G(x)} from
real ones {y}. Both networks are trained in an end-to-end fashion by optimizing
an adversarial loss:

LGAN(G,DY , X, Y ) = Eyvpdata(y)[logDY (y)]

+ Exvpdata(x)[log(1−DY (G(x))],
(4)

where E stands for the expected value of each corresponding data distribution [10].
This loss models a competition in which G tries to deceive DY by producing
realistic outputs and DY tries to overpass the scam.

Under this setting, a GAN needs to be trained using paired samples (x, y). In
our context, this means that we need real US images (y = IYUS) perfectly regis-
tered with the outputs of the first simulation stage (x = IUS), which is unfeasible.
A CycleGAN [30] gets rid of this limitation by including a second pair of genera-
tor/discriminator networks and a cycle consistency loss (Fig. 4). The new generator
F : Y → X learns how to translate realistic US images to the outputs of the ray-
casting based simulation by fooling a discriminator DX using an adversarial loss
complementary to (4). Additionally, the cycle consistency loss ensures that any
generated images can bring back the original input of its associated generator, e.g.
by following the forward cycle x→ G(x)→ F (G(x)) ≈ x and the backward cycle
y → F (y) → G(F (y)) ≈ y. This loss is given by the sum of two losses, one per
each cycle [30]:

Lcyc(G,F ) = Exvpdata(x)[||F (G(x))− x||1]

+ Eyvpdata(y)[||G(F (y))− y||1].
(5)

Hence, Lcyc(G,F ) acts as a regularizer for G and F , aiding them to approximately
match the data distributions pdata(y) and pdata(x) without relying on a training
set of paired samples.

We also incorporated an identity loss as in [25,30] to further regularize our
generators:

Lidentity(G,F ) = Exvpdata(x)[||F (x)− x||1]

+ Eyvpdata(y)[||G(y)− y||1].
(6)
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Notice that Lidentity penalizes changes in images from the target domain, that
should not be altered. This enforces each generator to avoid hallucinating unreal-
istic features.

The full training objective is equivalent to the one in [30], given by:

L(G,F,DX , DY ) = LGAN(G,DY , X, Y )

+ LGAN(F,DX , Y,X)

+ λcyc · Lcyc(G,F )

+ λidt · Lidentity(G,F )

(7)

where λcyc and λidt are hyperparameters that control the relative importance of
the loss terms.

The final models are obtained by solving the optimization problem:

G∗, F ∗ = arg min
G,F

max
DX ,DY

L(G,F,DX , DY ). (8)

Notice that only the generator G is used in test time, as our intention is refining
the simulated outputs IUS and not altering a real US scan to retrieve its simulated
equivalent.

3 Experimental setup

3.1 Materials

Our simulations were performed as in [15], using an abdominal CT volume from
patient 11 in the 3D-IRCADb-01 data set [1]. It comprises a scan from asubject
without any liver pathologies, with a resolution of 512 × 512 × 132 voxels with a
size of 0.72×0.72×1.6 mm. This data includes the segmentations of all abdominal
organs, except the stomach and the pancreas.

The set X was built using 817 simulated US images, pre-computed using the
ray-casting algorithm described in Section 2.1. The images were manually collected
from the volume described above, simulating a typical abdomen scanning proce-
dure with different transducer position, rotation and inclination angle. A separate
set of 33 simulated images from the main views in a typical abdomen ultrasound
exploration, (none of them used in the CycleGAN training set) was used for the
user study (Section 3.4).

The set Y of real US scans was built using a total number of 992 real images
from the abdomen. 719 were manually collected from the ETHZ data set [20,
7].1 To increase the size of the original set, an additional set of 273 images was
collected from the Deep Ultrasound website. 2 The final set was manually curated
by resizing and cropping the images to approximately the same pixel resolution
(256 x 256 pixels), and to remove any text and device information outside the field
of view.

1 http://www.vision.ee.ethz.ch/datasets_extra/usliverseq.zip
2 http://deepultrasound.ai/

http://www.vision.ee.ethz.ch/datasets_extra/usliverseq.zip
http://deepultrasound.ai/
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3.2 Simulation parameters

We used the C++ CPU implementation of the Kutter et al. approach [15] pre-
sented in [23]. Such a model uses fixed reflection coefficients αR for bones (0.5),
air (0.6), arteries (0.0001) and the portal vein (0.1). The coefficients w1 and w2

were experimentally fixed to 0.9 and 0.1, respectively. The deviations σ1 and σ2
were set to 1.5 and 3. The logarithmic compression at the end was applied using
a coefficient of 12 [23].

3.3 CycleGAN configuration

We used the Pytorch 0.4.0 implementation of the original CycleGAN paper [30] as
the baseline of our neural network implementation. 3 The two original generators,
a U-Netand a ResNetwere modified to avoid the classical checkerboard artifacts
of the transposed convolutions in the decoder branches [18]. Instead, we replaced
them with a combination of a bilinear upsampling followed by a convolution with a
kernel size of 3 and a stride of 1. Two different CycleGAN models, CycleGANU-Net

and CycleGANResNet, were trained for comparison purposes, each of them using
one of the two architectures for the generators. The coefficients λcyc and λidt
were experimentally fixed to 10 and 0.5. The models were trained using Adam
optimization for 400 epochs. An initial learning rate of 2 × 10−5 was used. After
the first 200 epochs, the learning rate was iteratively reduced by a fixed value of
1

201 . A NVIDIA Titan X GPU was used, and the mini-batch size was set to the
maximum possible value to fit both the models and the data on the GPU memory
(4 images for the ResNet architecture and 8 for the U-Net).

3.4 User evaluation study setup

A blind user study was performed to analyze the improvement in the perceptual
realism of the simulated US images. A custom online tool was developed to this
end, using the jsPsych JavaScript library [6]. The study was iteratively designed
based on the comments from independent volunteers, whose responses were not
included in the final test. After finishing each design trial, they were asked about
aspects such as usability of the user interface of the tool, tediousness of the test
and missing features. To account for criticisms regarding the time length of the
test and the presence of too similar images, we limited the amount of images
to a series of clinically representative sequences, with sufficient variability one
another. All these images corresponded to the main views in a typical abdominal
US exploration, namely intercostals, subcostals margin, longitudinal, oblique and
transverse scans.

Using the final version of the test, new volunteers were invited to rank the
realism of the images using a Likert scale from 1-5: Fake (1), Rather fake (2),
Cannot decide (3), Rather real (4) and Real (5). 21 experts in US participated
from the user study: 7 medical doctors (MD), 2 US technicians (Tec) and 12 bio-
engineers/computer scientists (BEng) with experience in US imaging (Fig. 7). A

3 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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total of 44 images were used during the test, with 11 being real US scans, 11
produced with the ray-casting based algorithm, and 22 processed with the Cycle-
GANs. From this set, 11 images were obtained with the U-Net architecture, and
the remaining 11 were computed using the ResNet. The first 4 images corresponded
to each of the categories and were presented as training examples, so the responses
to them were discarded. Therefore, the responses to the remaining 40 images were
taken for subsequent analysis. These scans were randomly presented to the experts
without indicating their origin or any ratio between simulated and reals. The time
spent in analyzing each image was also registered on a per-volunteer setting to
assess the participants’ reliability.

4 Results and Discussion

4.1 Qualitative analysis

Fig. 5 depicts qualitative examples of the outputs of the stages of our US simu-
lation approach, including the results obtained with the CycleGANU-Net and the
CycleGANResNet. All the images correspond to regions that are typically analyzed
during abdominal US examinations.

The ray-casting simulator images exhibits the organs in a clearer way than
the neural network outputs, as it uses the segmentations to generate the syn-
thetic scans. The reflection coefficients used for bones, air and blood vessels help
to better represent these structures, as seen in Fig. 5(b), although the resulting
artifacts are exaggerated. When applying the CycleGANU-Net, the overall struc-
ture of the images is maintained but the intensity distribution is changed to a
new appearance that better resembles a real US scan. Organs remain visible as
in the ray-casting based input, and no significant artifacts are introduced by the
network. The CycleGANResNet, on the contrary, produces more aggressive changes
to the synthetic input. Although organs are still recognizable, bright areas resem-
bling echos and noise, characteristic of US images, are spread over the images.
We hypothesize that the multiscale skip connections in the U-Net grant a bet-
ter reconstruction of the inputs than the ResNet, which only has two of these
connections in the first two resolution blocks. This has effects in the realism out-
comes (see Section 3.4), as it produces images that are hard to interpret. The
improvement in the tissue appearance near the probe becomes evident when in-
troducing any CycleGAN module, as the ray-casting algorithm do not explicitly
incorporate this artifact in the model. Furthermore, it is worth mentioning that the
CycleGANResNet does not introduce any features in black areas without echogenic
response (Fig. 5(d), first and second columns) but an artificial acoustic shadow-
ing, which is in line with the real response of the tissue. The CycleGANU-Net, on
the contrary, introduces bright but low contrast features in the area, which are
inconsistent with these attenuation artifacts.

The effect of the λidt parameter can be observed in Fig. 6. When the identity
loss is ignored (λidt = 0), the generator introduces bright artifacts that remain
constant in the same image location, regardless the position of the transducer and
without anatomical coherence (see arrows in Fig. 6). When λidt is increased, the
artifacts become more realistic and appear only at organ interfaces (e.g., in the
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Fig. 5: Qualitative examples of our results. (a) Virtual transducer location
in the CT volume, (b) Ray-casting based simulation, (c) CycleGANU-Net, (d)
CycleGANResNet and (e) Real US image.
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(a) λidt = 0.0 (b) λidt = 0.5 (c) λidt = 0.8

Fig. 6: Effect of the λidt value in the CycleGANU-Net results. Yellow arrow: artifact
in the liver interface. Light blue arrow: echogenic artifact.
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Fig. 7: Left: Distribution of expert volunteers participating in the user study.
Right: Box plots with the distribution of realism scores assigned by the group of
21 volunteers to each set of images in the user study. Mean responses and outliers
are indicated with circles and stars, respectively.

edges of the liver–yellow arrow–) or they move through the image following the
transducer position (e.g. the bright artifact indicated by the light blue arrow).

4.2 User study

To assess the degree of matching in the distribution of answers between the three
group of experts (MD, Tec and BEng), a series of two-tailed Wilcoxon rank sum
tests was performed between groups, per each image category. Bonferroni correc-
tion was applied to account for multiple comparisons, adjusting the significance
level 5% to 1.66% (3 comparisons). No statistical significant differences were ob-
served in the responses between groups of experts for all types of images, except be-
tween the BEng and Tec groups for the ray-casting generated images (p = 0.0104).

Fig. 7 presents the results of the user study. Responses from the different
groups of experts were merged for statistical analysis due to the high agreement in
their distribution. One-tail Wilcoxon sign rank tests were performed to assess the
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statistical significance of the differences in the responses for each group of images.
Bonferroni correction was also applied in this case, adjusting the significance level
of 5% to 1.25% (4 comparisons).

The outputs of the ray-casting algorithm were ranked with statistical signif-
icantly lower scores than the images generated with the CycleGANU-Net (p =
2.96 × 10−7), the CycleGANResNet (p = 3.04 × 10−14) and the real US scans
(p = 6.14 × 10−29). Introducing the CycleGANU-Net reduced the variability of
the responses, with most of them labeled as ”rather fake” and with an incre-
ment in the mean Likert scale. This can be associated to the evident changes in
the image intensity distribution that were qualitatively observed in Fig. 5 (c).
The CycleGANResNet, on the other hand, achieved higher realism values than the
CycleGANU-Net, with a much wider range of responses and higher mean and me-
dian values. These differences were also statistically significant according to the
hypothesis test (p = 3.51 × 10−5). The improvement in realism can be explained
by the ability of the ResNet based model to reproduce bright artifacts such as
those illustrated in Fig. 5 (d). On the other hand, these artifacts turn more dif-
ficult to interpret the content of the images, which could be associated to the
median response (”cannot decide”) and to the extra time taken by the volunteers
to provide the answers. Finally, it is worth mentioning that the real US scans
still reported statistically significant higher scores than our best simulation model
(p = 8.68× 10−15).

4.3 Model limitations

Fig. 8 presents some limitations of the current approach. We observed that both
models eventually introduce slight deformations in the edges of the field of view
(red arrows). This could be improved by training the models using images in polar
coordinates. Since this transformation results in images without empty spaces
at the boundaries, the generators will not produce fake responses there. On the
other hand, in challenging poor quality scenarios such as the one illustrated in
the second row of Fig. 8, both networks produce outputs with realistic artifacts
(light blue arrows) but uncorrelated with the anatomical location. Also the organs
with low contrast (green arrow) do not appear in the CycleGANs outputs (green
arrows), and the networks are both introducing fake organs (light blue arrows)
such as a kidney (Fig. 8b) or part of the liver (Fig. 8c). Both settings are in line
with the observations in [4] regarding fake features produced by GANs trained
with distribution matches losses. This might be prevented using a higher λidt
coefficient for the identity loss or by incorporating further regularization based on
organs locations. Improving the diversity of the real image set by adding US scans
from alternative regions could also helped to overcome this limitation.

It is also worth mentioning that we trained our method using the fixed con-
figuration of the ray-casting based simulation used in [23]. These parameters were
previously chosen based on a qualitative analysis of the generated scans. Never-
theless, improving this configuration with more realistic acoustic parameters and
scattering distributions might aid the CycleGAN model to further optimize the cy-
cle consistency losses, ensuring even more realistic outcomes. However, this would
demand an intensive hyperparameter search.
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(a) Ray casting (b) U-Net (c) ResNet

Fig. 8: Failed cases of the simulation method. Red arrow: deformations outside the
field of view. Green: missing organs. Light blue: hallucinated features.

5 Conclusions

In this work we introduced CycleGANs to improve realism in US simulation. We
observed that incorporating this additional stage allows generating more realistic
representations of the abdominal cavity than using only a ray-casting based algo-
rithm. This conclusion is also supported by a preliminary user study performed
by 21 experts in US imaging, which indicates that a ResNet architecture performs
better than a U-Net when applied as model’s generator. Further research in net-
work architectures might significantly improve the quality of the results. To the
best of our knowledge, this is the first study applying CycleGANs in this context.
This method paves the way towards efficient, realistic and patient-specific simula-
tion, which might be applied to improve simulators for training radiologists in US
image interpretation and to produce synthetic data sets for training deep neural
networks e.g. for US image segmentation[3].
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