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Abstract. Automated drusen segmentation in retinal optical coherence
tomography (OCT) scans is relevant for understanding age-related mac-
ular degeneration (AMD) risk and progression. This task is usually per-
formed by segmenting the top/bottom anatomical interfaces that define
drusen, the outer boundary of the retinal pigment epithelium (OBRPE)
and the Bruch’s membrane (BM), respectively. In this paper we pro-
pose a novel multi-decoder architecture that tackles drusen segmenta-
tion as a multitask problem. Instead of training a multiclass model for
OBRPE/BM segmentation, we use one decoder per target class and an
extra one aiming for the area between the layers. We also introduce con-
nections between each class-specific branch and the additional decoder
to increase the regularization effect of this surrogate task. We validated
our approach on private/public data sets with 166 early/intermediate
AMD Spectralis, and 200 AMD and control Bioptigen OCT volumes,
respectively. Our method consistently outperformed several baselines in
both layer and drusen segmentation evaluations.

1 Introduction

Age-related macular degeneration (AMD) is one of the leading causes of blind-
ness in elderly population in the developed world [1]. One of the first clinical
hallmarks of AMD is the presence of drusen, waste material accumulations in
the area delimited by the outer boundary of the retinal pigment epithelium
(OBRPE) and the Bruch’s membrane (BM). Optical coherence tomography
(OCT) is the state-of-the-art imaging modality to assess AMD patients, as it
allows to visualize the retinal layers and study pathological changes due to
AMD, including drusen. Segmenting drusen in OCT is relevant for quantifying
disease progression [2], although doing it manually is costly, tedious and time
consuming. Current methods for automated drusen segmentation are based on
identifying the OBRPE and BM interfaces, as every non-overlapped area in be-
tween those surfaces is considered drusen [3, 4]. Deep learning techniques based
on convolutional neural network (CNNs) have been recently explored for this
task [3–6]. In [4], a patch-based CNN is applied for feature extraction, com-
bined with graph search strategies and standard classifiers. In [5], an image-level
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Fig. 1. Different multiclass segmentation approaches. From left to right: single multi-
class model with high capacity, multitask model with 2 decoders [7] and our approaches
with an additional decoder for drusen class: no connections and surrogate decoder, with
connections and gradient flow, and with connections but no gradient flow. Box sizes
indicate the capacity of the module.

classification CNN is applied to predict the vertical coordinates of each surface.
A similar idea is followed in [6] to predict surface positions using a 2D-to-1D
approach.

Segmenting the OBRPE and the BM is a multiclass segmentation problem
that can be tackled in different ways (Fig. 1). The common solution [3] is to
use a multiclass model with high capacity (e.g. encoder/decoder architectures
such as the U-Net [8]) and a multiclass loss function (e.g. cross-entropy). This
model learns how to discriminate between classes and which features are needed
to identify them. This interaction cannot be explicitly controlled, and it is not
possible to assign portions of capacity to specific classes (although it can be
approached by weighting classes in the loss function, e.g. under class imbalance).

An alternative is to pose the multiclass segmentation task as a multitask
learning problem. Instead of having a single encoder and a single decoder, both
shared among the K target classes, the architecture is split into K decoders.
Each decoder is focused on a binary segmentation task, providing class-specific
capacities that are exclusively dedicated to the target problem. Simultaneously,
a single encoder is shared among them to characterize common features. This
architecture can be trained using a linear combination of K binary loss func-
tions, and benefits from the inductive bias of each task by updating the encoder
parameters. This approach has been previously explored in [7] for red/bright
lesion segmentation in fundus images, with promising results.

In this paper we bring the multitask approach in [7] one step further. In
particular, we exploit the fact that our drusen segmentation task comprises the
segmentation of the OBRPE and the BM to capture the area between them.
Hence, instead of having one decoder for each layer class, we introduce a third
one aiming to segment the region between both layers (Fig. 2). Our assumption
is that this additional branch will aid the encoder to characterize the appear-
ance of both drusen and non-pathological regions where OBRPE and BM are
overlapped. We also explore the influence resulting from introducing additional
connections between each of the layer decoders and this intermediate one, with
and without gradient flow. Allowing gradient flow is expected to further transfer
the inductive bias of the intermediate task not only to the encoder path but also
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through the main decoders. On the other hand, gradient blocking allows each
task to exploit only the feature maps learned for their respective target class.

We experimentally validated our three approaches using private and public
data sets of retinal OCT scans with 166 and 200 volumes acquired using Spec-
tralis and Bioptigen devices, respectively. Our proposed architectures reported
the best performance for drusen segmentation compared to several baselines.

2 Methods

2.1 Multiclass segmentation as multitask learning

Given an input image x ∈ X , our goal is to produce a label y for each pixel x,
in the label space L = {0, 1, ...,K}, with 0 being background and K the total
number of classes of interest. This task is usually performed using a supervised
deep learning model, fθ(X ) → Y, where X and Y are the set of B-scans and
labelings, respectively. The parameters θ are learned using a training set S =
{(x(i),y(i)), 0 < i < N}, with N the total number of pairs (x(i),y(i)) of training
images and their labels, respectively. This is done by minimizing a loss function
J(y, ŷ), where y and ŷ are the manual and predicted multiclass segmentations.

Network parameters can be decomposed as the union of the weights of the
encoder θE and the decoder θD, θ = θE ∪ θD. In a typical multiclass setting, all
the parameters are shared among classes and it is not possible to assign part of
them to each class. In [7], the authors proposed to replace the unique decoder by

two decoders, one per target. Formally, this is equivalent to model θD =
⋃K
k=1 θ

k
D,

where each θkD is the set of parameters of the decoder for the k-th class. This
model is trained by means of a multitask loss function, which is defined as a
linear combination of binary segmentation losses J(y, ŷ) =

∑K
k=1 λkJk(yk, ŷk).

λk denotes a weight for the k-th loss function, while yk and ŷk are binary
predictions for each class k vs. every other, including the background class.

2.2 Drusen segmentation in OCT as multitask learning

A retinal OCT scan is a 3D volume composed of consecutive 2D images or B-
scans, captured by means of low-coherence interferometry. We seek the model f
to produce a labeling for each input B-scan x. The classical strategy to do so is
to aim for the OBRPE and the BM interfaces: a multiclass segmentation prob-
lem with background vs. K = 2 classes [3, 5]. In healthy cases, both classes are
overlapped and there is no region in between them. In early/intermediate AMD
cases, however, a third class k = 3, is implicit in the non-overlapped areas of these
layers. Instead of considering this class as background, we propose to learn its
properties by considering K = 3 during training. This is done by: (i) adding an
extra decoder for this class, and (ii) incorporating another binary segmentation
term to the loss function that penalizes errors in the segmentation of this region.
Our hypothesis is that the existing decoders will benefit from the inductive bias
of this new task through the gradient updates in the encoder, better character-
izing the non-overlapped cases. To further increase the regularization effect of
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Fig. 2. Our multitask segmentation network for layer/drusen segmentation in OCT.
Skip connections between each parallel encoder/decoder block were omitted for clarity.
The number of output filters of each block are denoted on their left side.

this extra task, we also propose to incorporate inbound/outbound connections
between each θkD and θ3D, with k 6= 3, both with and without gradient flow.

Fig. 2 depicts our U-shaped architecture. Skip connections between each
parallel encoder/decoder convolutional/deconvolutional blocks were omitted for
clarity. Each convolutional block comprises two convolutional layers with 3 × 3
pixels convolutions. The Generalized Dice loss function was applied for each
Jk(yk, ŷk) [9], and the predicted labels were binary masks for each target class,
as depicted in Fig. 2. These outputs were combined to produce the final segmen-
tation. Any segmented component with an area smaller than expected size for
BM region (yellow in Fig. 2) or for RPE region (red in Fig. 2), in the output
mask was treated as noise and removed from the mask. To retrieve the surfaces
of the BM/OBRPE layers, a postprocessing strategy was applied: for each ver-
tical column in the B-scan (or A-scan), the first/last row of activated pixels was
taken as the surface boundary, respectively.

3 Experimental setup

Our private data set consisted of 560 fovea-centered Spectralis OCT volumes of
patients with early/intermediate AMD. In total, there are 51K B-scans acquired
from 48 patients and 63 eyes. Each scan comprises 1024× 97× 496 voxels, with
a voxel size of 5.7 × 60.5 × 3.87µm3, covering the field of view of 6 × 6 × 2
mm3. A manual labelling was produced for each B-scan on every volume. The
Iowa Reference Algorithms [10] were used to generate a first raw segmentation,
which was subsequently manually corrected by an expert clinician. To train
and evaluate the networks, we split the data into 41K B-scans for training and
validation (33 patients, 42 eyes) and 10K B-scans for testing (15 patients, 21
eyes). Scans from the same subjects were always placed in the same subset.



Multitask learning for drusen segmentation in OCT scans 5

A second evaluation was performed on a publicly available data set from
Duke [11], comprising 384 OCT volumes from 269 patients with intermediate
AMD and 115 control subjects. Images were acquired with a Bioptigen device,
where each scan consists of 1000× 100× 512 voxels, with a voxel size of 6.54×
67×3.23µm3, covering the field of view of 6.7×6.7×1.66 mm3. The labels in this
data set comprise both the BM and the inner boundary of the RPE (IBRPE).
In healthy cases, the region between these two layers is not empty but covers
the RPE, while in diseased cases it accounts for the RPE+drusen complex. The
data is divided into 165 AMD plus 5 Control, In order to be consistent with
the recent literature, we split the data set into training, validation and test sets
using the same proportions as recently used in [6]. Notice, however, that this
does not ensure that the same images are used for comparison. We performed
the evaluation both in control and AMD diseased cases.

Training Setup Our method and the baselines were trained with a batch size of
16 for at least 50 epochs, using Adam optimization with an initial learning rate
of η = 10−5, decreased by a factor of 10−7 after every epoch. Training was halted
if no improvement in loss function(dice coefficient) was observed in 4 consecutive
epochs. Each input B-scan was resized to 256×256 pixels and normalized to zero
mean and unit variance. Data augmentation was applied in the form of flipping
and translation. An equal weighting λk = 1 was used for each loss function Jk.

4 Results

We evaluated our method in terms of drusen and layer segmentation perfor-
mance. For drusen segmentation, we used classical binary evaluation metrics
such as Dice index, precision and recall (sensitivity). For layer segmentation, we
used mean absolute error. Since our data set includes multiple scans for the same
eye of different patients, the evaluation metrics were first computed at an eye
level and then averaged by the number of visits. This ensures to have indepen-
dent samples for subsequent statistical analysis. The significance of the results
was evaluated using a paired Wilcoxon signed-rank test with α = 0.05.

Three baselines were quantitatively compared with respect to our three pro-
posed models using our private data set of early/intermediate AMD subjects: a
binary U-Net trained for background vs. drusen segmentation [3]; a multiclass U-
Net trained for segmenting OBRPE and BM [3]; and a multidecoder alternative
such as the one in [7], with two decoders for segmenting OBRPE and BM, with-
out connections between them. Enough capacity was given to these baselines to
match the one of our models. These quantitative results for drusen segmentation
are summarized in Table 1. Fig. 3 depicts boxplots representing the mean abso-
lute error in BM and OBRPE segmentation. Our method performed better than
the baselines in any of its forms. Inbound/outbound connections with the drusen
decoder were observed to significantly increase performance when no gradient
flow is allowed through them (with vs. without gradients, p < 0.05). Exemplary
results on the central B-scan of volumes with the highest, median and lowest
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Table 1. Quantitative evaluation of drusen segmentation results in our private data
set. Values are reported across averaged eye-level performance.

Method Dice Precision Recall

Binary U-Net [3] (Drusen) 0.66±0.14 0.79±0.09 0.58±0.17

Multiclass U-Net [3] (OBRPE/BM) 0.68±0.13 0.79±0.12 0.59±0.18

Multitask [7] (OBRPE/BM decoders) 0.69±0.18 0.79±0.16 0.62±0.2

Ours (disconnected decoders) 0.71±0.13 0.83±0.07 0.64±0.17

Ours (connected with gradient flow) 0.72±0.12 0.83±0.08 0.65±0.16

Ours (connected w/o gradient flow) 0.73±0.12 0.84±0.07 0.67±0.1

2.5
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1.25
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0.75
0.50

(1) (2) (3) (4) (5) (6)

(a) OBRPE

2.5
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1.25
1.00
0.75
0.50

(1) (2) (3) (4) (5) (6)

(b) BM

Fig. 3. Mean absolute error of OBRPE and BM surface segmentation in pixels on our
private data set. (1) Multiclass U-Net with OBRPE/BM targets, (2) Multiclass U-Net
with OBRPE/BM/drusen targets, (3) Multitask approach with 2 decoders, (4-6) Our
model with (4) disconnected decoders, (5) connected decoders and gradient flow and
(6) connected decoders and without gradient flow.

volume level dice are depicted in Fig. 4. Our approach is able to consistently
detect drusen of any size. The median case (second column) presents small ma-
terial accumulations that are slightly undersegmented by our method. A similar
behavior is observed in the worst case (first column) for the large drusen in the
center of the image. Nevertheless, both cases present visual ambiguities that are
difficult to address even for human readers.

Finally, Table 2 presents an evaluation of our best model in the public data
set. To match the available annotations, our approach was trained for ILM,
IBRPE and BM segmentation, with one branch per target surface. Our model
clearly outperformed two recently proposed methods [5, 6] that reported their
performance on the same dataset.

5 Discussion

We introduced a novel multitask approach for multiclass segmentation in reti-
nal OCT images. In particular, we showed that our multi-decoder architecture
is able to outperform standard baselines by incorporating an intermediate de-
coder that targets the area between two stacked interfaces. This improvement,
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Fig. 4. Qualitative results of our best method (connected without gradient flow).
From left to right: worst, median and best cases according to volume level Dice (0.4,
0.7, 0.94, respectively). From top to bottom: original B-scan, manual segmentation
(blue=OBRPE, red=drusen, yellow=BM), predicted layers (red=OBRPE, green=BM)
and predicted drusen (red).

for example, is observed in drusen segmentation, with an increment of 3% in
Dice index with respect to the multitask approach presented in [7]. Introduc-
ing connections between decoders also allowed for further improvement on Dice
for drusen segmentation, while also improving performance for OBRPE and BM
segmentation. Surprisingly, the best results were observed when no gradient flow
was allowed between the connected decoders. This implies that, at least on our
data set, local information provided by neighbouring classes can improve results.
Finally, we also include an evaluation for layer segmentation in OCT images us-
ing the Duke public available data set, to further compare our method with the
state-of-the-art. We used the same portion size of data as this work, clearly re-
ported the lowest error for all the evaluated surfaces. This promising empirical
evidence leads us to envision further applications that might benefit from our
approach, such as layer segmentation in retinal diseased cases with fluid, where
an extra decoder can be added targeting only those lesions.
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Table 2. Quantitative evaluation of BM, IBRPE and ILM segmentation in terms of
absolute surface differences in pixels on Duke data sets [11]. This evaluation is done on
AMD and control subjects for 100 AMD cases and 100 healthy cases.

AMD set

Method ILM IBRPE BM

Shah et al., 2018 [5] 1.15 ± 0.25 1.88 ± 0.57 1.81 ± 0.56

Liefers et al., 2019 [6] 1.055 1.568 1.858

Ours (connected w/o gradients) 0.88 ± 0.09 1.23 ± 0.11 1.15 ± 0.1

Control (healthy) set

Method ILM IBRPE BM

Shah et al., 2018 [5] 1.04 ± 0.07 1.19 ± 0.18 1.54 ± 0.31

Liefers et al., 2019 [6] 0.84 1.28 1.227

Ours (connected w/o gradients) 0.65 ± 0.06 1.06 ± 0.12 0.9 ± 0.08
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