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Abstract: Diagnosis and treatment in ophthalmology depend on modern retinal imaging by
optical coherence tomography (OCT). The recent staggering results of machine learning in
medical imaging have inspired the development of automated segmentation methods to identify
and quantify pathological features in OCT scans. These models need to be sensitive to image
features defining patterns of interest, while remaining robust to differences in imaging protocols.
A dominant factor for such image differences is the type of OCT acquisition device. In this paper,
we analyze the ability of recently developed unsupervised unpaired image translations based on
cycle consistency losses (cycleGANs) to deal with image variability across different OCT devices
(Spectralis and Cirrus). This evaluation was performed on two clinically relevant segmentation
tasks in retinal OCT imaging: fluid and photoreceptor layer segmentation. Additionally, a
visual Turing test designed to assess the quality of the learned translation models was carried
out by a group of 18 participants with different background expertise. Results show that
the learned translation models improve the generalization ability of segmentation models to
other OCT-vendors/domains not seen during training. Moreover, relationships between model
hyper-parameters and the realism as well as the morphological consistency of the generated
images could be identified.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is a non-invasive technique that provides 3D volumes of
the retina at a micrometric resolution [1]. Each OCT volume comprises multiple cross-sectional
2D images, or B-scans, each of them composed of 1D columns, or A-scans. By means of the
OCT imaging modality, clinicians are allowed to perform detailed ophthalmic examinations
for disease diagnosis, assessment and treatment planning. Standard treatment and diagnosis
protocols nowadays rely heavily on B-scan images to inform clinical decisions [2].
Several imaging tasks such as segmentation of anatomical structures or classification of

pathological cases are successfully addressed by automated image analysis methods. These
approaches are commonly based on machine learning (ML) models, which are trained on
manually annotated datasets in a supervised setting. Among the existing ML tools, deep learning
(DL) techniques based on convolutional neural networks have been remarkably successful in
different domains [3], including automated OCT image analysis [4].
However, these models are usually prone to errors when deployed on real clinical scenarios.

This is partially due to the differences in the data distributions of the training sets and the real
world data sets. This phenomenon is known as covariate shift, as formally defined in [5]. An
important example of this phenomenon is observed in practice when the training and deployment

#379978 https://doi.org/10.1364/BOE.379978
Journal © 2020 Received 10 Oct 2019; revised 10 Dec 2019; accepted 11 Dec 2019; published 20 Dec 2019

https://orcid.org/0000-0002-9168-0894
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.379978&amp;domain=pdf&amp;date_stamp=2019-12-20


Research Article Vol. 11, No. 1 / 1 January 2020 / Biomedical Optics Express 347

sets come from different acquisition devices. In the daily ophthalmological routine, several OCT
devices from different vendors with varying acquisition protocols are used. As a consequence,
regardless of the scanned area, the resulting OCT volumes present different image characteristics
and patterns (Fig. 2). This covariate shift has been observed to cause remarkable drops in the
performance of different DL models for retinal fluid and layer segmentation [6–8].

Related Work Image translation has been applied in cross-modality medical image analysis.
Early approaches, requiring paired training data across the datasets, are frequently based on
patch-based learning [9] and convolutional neural networks [10]. Recently, strategies based on
generative adversarial networks (GAN) [11,12] allow a more flexible model training compared to
the former since the training examples across multiple modalities do not need to be paired.

Another application for image translation in medical imaging is reducing the image differences
within a medical image modality. Lately, the covariate shift phenomenon due to different
acquisition devices has received a lot of attention across several imaging modalities in medical
image analysis. For instance, [13] proposed a siamese neural network that generates device
independent features and improves the generalization ability of brain tissue segmentation models
in magnetic resonance imaging (MRI). The whole process requires a limited amount of fully
annotated MRI images describing the tissue class in the target device. A cycle-consistency
based loss was used in [14] to learn a stain-translating model for histology images across two
datasets from different centers. The authors report that the stain-translation model improved
the segmentation model’s performance in renal tissue slides. Cheng et al. [15] proposed a
domain adaptation method for chest X-ray imaging based on unsupervised cycle consistency
adversarial and semantic aware loss, improving the performance of lung segmentation models on
different public datasets. In general, several of these recently proposed techniques are based on
cycle-consistency adversarial losses [12,14–20] which were firstly introduced in the cycleGAN
unpaired unsupervised learning algorithm [21]. Unpaired unsupervised learning techniques for
alleviating the performance drop of retinal and choroidal layer segmentation models across OCT
acquisition devices is also being proposed in non-peer reviewed pre-print [22].

Currently, the most straightforward approach to deal with image variability across OCT devices
is to train vendor-specific models for each task. An example of this approach was shown in
De Fauw et al. [8], where a two-stage DL approach was used to diagnose retinal disease. The
first stage generates segmentation maps associated with retinal morphology and other OCT
imaging related concepts. Then, the second stage generates referral predictions based on the
segmented feature maps and is consequently device independent. However, time-consuming
manual annotations needed to be collected for each vendor to adequately (re-)train the retinal
segmentation models of the first stage, and hence assure device independence of the second stage.
In contrast, using unpaired unsupervised algorithms to adjust the image properties of the B-scans
would not require additional manual annotations. This remarkable advantage would likely have
an important impact when OCT low-cost devices [23] become available, as they could benefit
from the already pretrained state-of-the-art retinal segmentation DL models.

Contribution In this work, we evaluated the ability of the translations obtained by the
cycleGAN algorithm [21] to reduce the covariate shift in DL segmentation models across
different OCT acquisition devices. This paper is an extension of our previous work, where an
unpaired unsupervised algorithm was evaluated on retinal fluid segmentation performance [24].
In that work, we observed that covariate shift in OCT imaging may be successfully alleviated
for fluid segmentation task by means of cycleGANs. Such an approach allows to translate
images acquired using an OCT device B to resemble images produced by a different device A
(Fig. 1). As a result, the new image can then be processed using a segmentation model trained
on images from A without a significant drop in performance. In this paper, we extended the
evaluation by analyzing the applicability of cycleGANs also in the context of an anatomical layer
segmentation task. Furthermore, a visual Turing test was performed by 18 participants with
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different background expertise to comprehensively study the appearance of the resulting synthetic
images. To the best of our knowledge, this is the first work that comprehensively explores
cycleGAN algorithms in OCT images to reduce image variability across OCT acquisition devices.

Fig. 1. Schematic overview demonstrating how unpaired translation models reduce
performance drop due to covariate shift in models trained with different OCT acquisition
vendors.

The main contributions of this paper can be summarised by the following three points:

• We empirically demonstrated that unsupervised unpaired algorithms are able to reduce
the covariate shift between different OCT acquisition devices. Segmentation performance
in particular cases of retinal layer and fluid segmentation showed significant quantitative
improvements. These tasks are clinically relevant, and possibly the most active research
topics in automated OCT image segmentation.

• We performed an extensive analysis of the effect of the unsupervised unpaired algorithm
training patch size in the cross-vendor segmentation tasks. Particularly, we found that
optimal patch size might depend on each task, with larger patch sizes more suitable for
tasks in which larger structures need to be segmented.

• We performed a visual Turing test with a large set of participants (n=18) with different
background expertise. The results show that the image patch size at training stage is
an important parameter, controlling the trade-off between “realism” and ”morphological
fidelity” of the images generated by the translation model. The test demonstrated that
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translation models trained with larger patch sizes induce a more realistic appearance but
were prone to generate artifacts distorting morphological features in the retina. On the
other hand, models trained with smaller patch sizes rarely present such distortions, but are
easily identified as “fake” images.

This paper is organized as follows. First, Section 2 describes the methods used in this work:
the deep learning segmentation model, the cycleGAN and baseline translation algorithms. In
Section 3 we describe the used datasets, training details of the models and the experimental
evaluation setup. In Section 4, qualitative and quantitative results of the segmentation tasks and
the visual Turing test are given. Finally, a discussion of these results and conclusions of the work
are presented in Section 5 and Section 6.

2. Methods

This section presents a summary of the methodologies used in our study. In particular, Section 2.1
describes the unsupervised unpaired translation algorithm based on cycleGANs. Subsequently,
Section 2.2 presents a brief description of alternative filtering-based translations that are
used as baselines to compare with our proposed approach. Finally, Section 2.3 formalizes the
segmentation tasks and describes the neural network architectures used for fluid and photoreceptor
layer segmentation.

2.1. Unsupervised unpaired translation using cycleGANs

We propose to apply unsupervised unpaired generative adversarial networks to automatically
translate OCT images from one vendor to another. Formally, let A and B be two different image
domains, where any image a ∈ A has different visual characteristics compared to any other image
b ∈ B. Cycle generative adversarial networks (cycleGANs) allow to learn a suitable translation
function between the image domains A and B without requiring paired samples, allowing to
tackle an ill-posed translation problem (i.e. unpaired translation) [21].

A cycleGAN uses two generator/discriminator pairs (GA→B/DB, GB→A/DA), which are imple-
mented as deep neural networks. GA→B is supplied with an image from the source domain A and
translates it into the target domain B. Analogously, GB→A translates the image back from the
target B to the source domain A. DA (DB) is trained to distinguish between real samples from
the source (target) domain and the translated images, being associated to the likelihood that a
certain image is sampled from domain A (B). The objective for the mapping function GA−B can
be expressed as:

arg min
GA→B,GB→A

max
DA,DB

L(GA→B,GB→A,DA,DB) = LGAN(GA→B,DB)

+ LGAN(GB→A,DA)

+ η1Lcyc
+ η2Lidentity(GA→B,GB→A),

(1)

where the last two terms are the cycle consistency Lcyc and the identity mapping loss Lidentity, as
defined in [21], with weights η1 and η2 that control their relevance in the overall loss. Both Lcyc
and Lidentity serve as useful regularization terms improving the obtained translation functions
GA→B and GB→A. Minimizing Lcyc constrains the mentioned translations to be reversible, so
successive application of GA→B and GB→A (GB→A and GA→B) to an image from domain A (B)
generates an image that matches the original source image. In contrast, minimizing Lidentity
regularizes the resulting translation GA→B (GB→A) to generate a target image that is close to the
source image, if the source image already have a target B (A) domain appearance. Intuitively
speaking, this means that the translation GA→B (GB→A) is constrained so that changes of source
images that are not needed are avoided.
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The first two terms LGAN correspond to the least square generative adversarial loss terms [25]:

LGAN(GA→B,DB) = LGAN(DB) + LGAN(GA→B), with

LGAN(DB) =
1
2
Eb∼B[(DB(b) − 1)2] +

1
2
Ea∼A[DB(GA→B(a))2]LGAN(GA→B)

=
1
2
Ea∼A[(DB(GA→B(a)) − 1)2]

(2)

where LGAN(GB→A,DA), is defined analogously. Both the generator and discriminator were
implemented as deep neural networks following the ResNet based architecture presented in [21].

2.2. Baseline translation algorithms

Domain translation across images of different acquisition devices is not a common operation in
OCT imaging. As such, no baselines are currently available for comparison purposes. However,
some preprocessing pipelines including denoising and histogram matching algorithms have
been used to standardize the appearance of OCT B-scans [26]. In this work, we followed the
methodology applied in [27] to define two suitable translations to approximate the appearance
of Spectralis OCTs from Cirrus B-scans. The first translation strategy (T1) consist of an initial
B-scan level median filtering operation (with 3 × 3 kernel size) followed by a second median
filtering operation across neighboring B-scans, with a 1×1×3 kernel size. The second translation
(T2) consists of an initial histogram matching step using a random Spectralis OCT volume as a
template, followed by the same filtering operations as described for T1. These strategies were
applied as baseline translations when converting images from the Cirrus to Spectralis domain.
Translations from Spectralis to Cirrus are not commonly employed in the literature, since Cirrus
B-scans have a lower signal-to-noise ratio (SNR).

2.3. Segmentation models

A segmentation model fθ with parameters θ aims to output a label y ∈ {1, . . . , k} for each pixel x
in an input image I ∈ Rh×w (i.e. a B-scan), with k being the maximum number of classes and h
and w the height and width of the images in pixels. In general, f is modeled using convolutional
neural networks. In that case, the parameters θ are learned in a supervised way from a training
set S = {(I(i),Y (i))}, 1 ≤ i ≤ n with n pairs of training images I(i) and their corresponding
manual annotations Y (i). This is done by minimizing a pixel-wise loss function J(fθ (I(i)), Y (i)) that
penalizes the differences between the prediction fθ (I(i)) and its associated ground truth labeling
Y (i).

In the fluid and photoreceptor segmentation tasks analyzed in this paper, f is a fully convolutional
neural network with an encoder-decoder architecture, inspired by the U-Net [28] architecture.
The encoder path consists of convolution blocks followed by max-pooling layers, which contracts
the input and uses the context for segmentation. The decoder counterpart, on the other hand,
performs up-sampling operations followed by convolution blocks, enabling precise localization
in combination with skip-connections. For fluid segmentation, a standard U-Net architecture was
applied. For photoreceptor segmentation, we took advantage of the recently proposed U2-Net
[29], which is to the best of our knowledge the only existing deep learning approach for this task.

3. Experimental setup

We evaluated the ability of cycleGANs for translating OCT images from one vendor to another in
a twofold basis. First, we estimated the generalization ability of models for fluid (i.e. pathology)
and photoreceptor layer (i.e. regular anatomy) segmentation on a new unseen domain when
translating the input images to resemble those used for training. Secondly, we performed
a visual Turing test in which different expert groups analyzed the images produced by the
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cycleGAN. We additionally asked the experts to identify morphological changes introduced by
the cycleGAN-based translations.
The datasets (Section 3.1), deep learning training setups (Section 3.2) and the evaluation of

the translation models (Section 3.3) are described next.

3.1. Materials

All the OCT volumes used in our experiments were acquired either with Cirrus HD-OCT
400/4000 (Carl Zeiss Meditec, Dublin, CA, USA) or Spectralis (Heidelberg Engineering, GER)
devices. Spectralis (Cirrus) devices utilize a scanning superluminescence diode to emit a light
beam with a center wavelength of 870nm (840nm), an optical axial resolution of 7µm (5µm)
in tissue, and an optical transversal resolution of 14µm (10µm) in tissue. All the scans were
centered at the fovea and covered approximately the same physical volume of 2µm × 6µm × 6µm.
Cirrus images had a voxel dimension of 1024 × 512 × 128 or 1024 × 200 × 200, and Spectralis
volumes had a voxel dimension of 496 × 512 × 49. All Cirrus volumes were resampled using
nearest-neighbor interpolation to match the resolution of Spectralis volumes (496 × 512 × 49).
As observed in Fig. 2, the B-scans produced by each device differ substantially from each other.
In addition to the differences mentioned earlier with respect to the scanning light source, axial
and transversal OCT resolution, the Spectralis devices apply a B-scan averaging procedure (by
default 16 frames per B-scan). This procedure leads to an improved signal-to-noise ratio (SNR)
compared to Cirrus scans. Image data was anonymized and ethics approval was obtained for
research use from the ethics committee at the Medical University of Vienna (Vienna, Austria).

Fig. 2. Cirrus (a) and Spectralis (b) B-scans with a corresponding close-up of the retinal
layers. Both B-scans were acquired from the same patient at approximately the same time
and retinal location, to illustrate their difference in appearance.

Four different datasets were used for our study, each of them for (1) training the unpaired
translation model, (2) train and evaluate the fluid segmentation method, (3) train and evaluate the
photoreceptor layer segmentation method and (4) for the visual Turing test. All the datasets and
their corresponding partitions into training, validation and test are described in the sequel.

Unpaired Training Dataset This dataset comprises a total of 1, 179 OCT volumes (57, 771
B-scans after resampling Cirrus OCTs). 592 (587) OCT volumes were acquired with the
Spectralis (Cirrus) device. The Spectralis (Cirrus) OCT volumes correspond to pathological
retinas of patients suffering from different diseases, with 195 (192) samples with age-related
macular degeneration (AMD), 197 (196) with retinal vein occlusion (RVO) and 200 (199) with
diabetic macular edema (DME). For each vendor, the data was randomly split into training
(51, 695) and validation sets (6, 076), with no patient overlap between these two sets.

Fluid Segmentation Dataset A total amount of 228 OCT volumes (66 Spectralis, 162 Cirrus)
were selected for the fluid segmentation experiment, comprising a total number of 11, 172
B-scans. The Spectralis (Cirrus) set contained 59(62) pathological retinas with AMD and 7(100)
with RVO. Experienced graders of the Vienna Reading Center performed manual pixel-wise
annotations of intra-retinal cystoid fluid (IRC) and sub-retinal fluid (SRF) on those OCT volumes.
The annotations were supervised by retinal expert ophthalmologists following a standardized
annotation protocol. The datasets were randomly divided on patient distinct basis into 2254
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(5586), 294 (441), and 686 (1911) B-scans used for training, validation and testing, respectively,
on the Spectralis (Cirrus) set.

Photoreceptor Layer Segmentation Dataset Photoreceptor segmentation experiments were
performed using two data sets of Cirrus and Spectralis scans, comprising 43 and 50 volumes,
respectively. Each Cirrus (Spectralis) volume is composed of 128 (49) B-scans with a resolution
of 496 × 512 pixels. All the volumes were acquired from diseased patients. In particular, the
Spectralis subset comprised 16 images with DME, 24 with RVO and 10 with intermediate AMD.
The distribution of diseases in the Cirrus subset was approximately uniform, with 16 DME, 17
RVO and 10 early AMD cases. Each volume was manually delineated by trained readers and
supervised by a retina expert that corrected the segmentations when needed. The datasets were
randomly divided on patient-basis into 1519 (1323), 196 (147) and 739 (637) B-scans used for
training, validation and test, respectively, on the Spectralis (Cirrus) set.

Visual Turing Test Dataset For the visual Turing test, we randomly selected a subset of
B-scans from the fluid segmentation test set. In particular, B-scans were sampled from randomly
selected OCT volumes following a Gaussian distribution, having a mean on the central B-scan
(#25) and a standard deviation of 8 B-scans. A total of 90 Spectralis and 90 Cirrus B-scans were
selected.

3.2. Training setup

The network architectures, training setups and configurations of each deep learning model are
summarized in the sequel for each stage of our evaluation pipeline.

Unsupervised Image Translation Model Four different cycleGAN models were trained on
the unpaired training dataset using squared patches of sizes of 64× 64, 128× 128, 256× 256, and
460 × 460, respectively finally resulting in four different models (CycleGAN64, CycleGAN128,
CycleGAN256, CycleGAN460). Each training phase consisted of 20 epochs using a mini batch
size of 1. At each epoch, the deep learning model processes a patch randomly extracted from
each B-scan in the training set. Each pair of generator/discriminator was saved after each epoch
to subsequently select the best performing model. To address the fact that adversarial losses are
unstable during training, we applied the following model selection strategy based on the validation
set. First, all 20 generators were used to translate the corresponding (Cirrus or Spectralis) central
B-scans of the validation set. Then, the average LGAN(D) term in Eq. 2 was computed for all
associated discriminators using the same image sampling order for the target and source image
sets. The maximum adversarial loss of the 20 discriminators was then used as the final selection
score for each generator. Finally, the generator with the minimum score was selected for a specific
patch size configuration. This procedure allowed us to select pairs of generators that were not
necessarily paired at the training stage.
The generator is an encoder/decoder ResNet based architecture with the following structure.

The first layer was a 7 × 7 Convolution-InstanceNorm-ReLU block with 32 filters and a stride
of 1, followed by two 3 × 3 Convolution-InstanceNorm-ReLU blocks with 64 and 128 filters,
respectively. Afterwards, a sequence of 9 residual blocks were stacked, each of them comprising
two 3 × 3 convolutional layers with 128 filters. Subsequently, two 3 × 3 Transposed-Convolution-
InstanceNorm-ReLU blocks with 64 and 32 filters (stride 1

2 ) were followed by a final 7 × 7
Convolution-InstanceNorm-ReLU block with 3 filters. On the other hand, the discriminator
consisted of four 4 × 4 Convolution-InstanceNorm-LeakyReLU blocks with 64, 128, 256 and
512 filters.

Fluid Segmentation Model The fluid segmentation model is an encoder/decoder network
inspired by the U-Net architecture. We used five levels of depth, with the number of output
channels going from 64 in the first to 1, 024 in the bottleneck layer, in powers of 2. Each
convolutional block consisted of two 3 × 3 convolutions, each followed by a batch-normalization
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layer and a rectified linear unit (ReLU). While 2 × 2 max-pooling was used for downsampling,
upsampling was performed using nearest-neighbor interpolation.
We used the negative log-likelihood loss in all our segmentation experiments, Kaiming

initialization [30], Adam optimization [31], and a learning rate of 1e−3, which was decreased by
half every 15 epochs. We trained our networks for 80 epochs and selected the model with the
best average F1-score on the validation set.

Photoreceptor Layer Segmentation Model Photoreceptor segmentation was performed by
means of the U2-Net approach described in [29]. Such an architecture allows to retrieve
probabilistic segmentations of the region of interest and uncertainty maps highlighting potential
areas of pathological morphology and/or errors in the prediction. The core model is inspired
by the U-Net, while incorporating dropout with a rate of 0.2 after several convolutional layers.
By using dropout in test time, T = 10 Monte Carlo samples were obtained, retrieving the final
segmentation as the pixel-wise average of the resulting samples.

3.3. Evaluation of the translation model

We evaluated the quality of the translated images obtained by the cycleGAN translation models
in two different scenarios. On one hand, we measured the ability of the cycleGAN algorithm
to reduce the covariate shift between images from different OCT vendors in automated retinal
segmentation tasks. On the other hand, we carried out a visual Turing test to evaluate both the
“realism” of the generated images and to identify potential morphological artifacts introduced in
the translated version of the scans.

Evaluation via Segmentation Tasks The performance of the segmentation models was
assessed in several versions of the B-scans in the corresponding test set. These B-scan versions
were obtained by applying one of the following processes: (1) No translation, four different
versions of cycleGAN models trained with different image patch size: (2) CycleGAN64, (3)
CycleGAN128, (4) CycleGAN256 and (5) CycleGAN460. Additionally, the (6) T1 and (7) T2
translations were only applied as baseline for the Cirrus-to-Spectralis translation (Section 2.2).
We evaluated the performance of the segmentation models for the different image versions by
computing the Dice score, precision and recall on the test set at voxel level. One-sided Wilcoxon
signed-rank tests were performed to test for statistically significant differences.

Evaluation via Visual Turing Test The perceptual evaluation was carried out by a group of
18 participants with a different professional background (6 computer scientists, 6 OCT readers
and 6 ophthalmologist), all of them experienced working with OCT images. The graphical user
interface was implemented using the jsPsych library [32]. In the first task, the participants were
asked to identify the “fake” translated image of a shown pair of original/translated B-scans. For
this part of the visual Turing test, one-sided Wilcoxon signed-rank tests were performed to check
for statistically significant differences.
In the second task, the participants were asked to identify morphological changes in the

retina introduced by the cycleGAN-based translations. The evaluation resulted in a morphology
preservation score (MPS) for each original/translated image pair, ranging from 1 (morphological
changes detected) to 5 (no morphological changes detected). In particular, the participants were
asked to rate their level of agreement (from 1 ’strong disagreement’ to 5 ’strong agreement’) with
the statement “There are no morphological differences between the original/translated image”,
meaning that MPS ∈ {1, 2, 3, 4, 5}. If the MPS was 1 or 2, the participants were further asked to
select the portions of the image in which they found differences. This second task was carried
out only by the ophthalmologist group.
Each participant observed 60 translated/original B-scans pairs (30 original Spectralis and 30

original Cirrus B-scans), randomly sampled from the Visual Turing Test Dataset (Section 3.1).
For each sample, randomly either the CycleGAN128 or CycleGAN460 model was used to generate
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the translated version of the image. For the second task, one-sided Mann-Whitney-U-Tests were
performed to determine statistical significance.

4. Results

While general qualitative results for the Cirrus-to-Spectralis translation are illustrated in Fig. 3,
qualitative segmentation results are shown in Figs. 4–5 for both translation directions. Retinal fluid
segmentation results are presented in Section 4.1 (Figs. 6–7) and results for retinal photoreceptor
layer segmentation are provided in Section 4.2 (Fig. 8). Results of the Visual Turing test are
covered in Section 4.3 (Figs. 9–10).

Fig. 3. Qualitative results of the image translation algorithms. An original Cirrus OCT
B-scan (a) was translated to the Spectralis domain using T2 (b), and CycleGAN460 (c). The
corresponding original Spectralis B-scan (d) acquired from the same patient at approximately
the same time and retinal location is also shown for reference. The image generated in
(c) has intensity values and an image noise level similar to those observed in the original
Spectralis image (d).

Fig. 4. Qualitative results in the Cirrus test set, shown for fluid (top row: bright=IRC,
dark=SRF) and photoreceptor layer segmentation tasks (bottom row). Manual annotations
are shown in red (a,e). Segmentations of the upper-bound model (Cirrus-on-Cirrus) are
highlighted in green (b,f). Results of the best cycleGAN-models are illustrated in cyan (c:
CycleGAN256, g: CycleGAN128). Predictions of the Spectralis model on the original
Cirrus-scans (no translation) are denoted in yellow (d,h).

4.1. Fluid segmentation results

Initial evaluation of the Spectralis segmentation model on the Spectralis test set showed a
Precision, Recall and Dice for IRC (SRF) of 0.78 (0.86), 0.75 (0.74) and 0.76 (0.76). The
evaluation of the Cirrus segmentation model on the Cirrus test set yielded a Precision, Recall and
Dice for IRC (SRF) of 0.74 (0.87), 0.67 (0.45), 0.66 (0.56). Notably, the performance of the
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Fig. 5. Qualitative results in the Spectralis test set, shown for fluid (top row: bright=IRC,
dark=SRF) and photoreceptor layer segmentation tasks (bottom row). Manual annotations
are shown in red (a,e). Segmentations of the upper-bound model (Spectralis-on-Spectralis)
are highlighted in green (b,f). Results of the best cycleGAN-models are illustrated in cyan
(c: CycleGAN256, g: CycleGAN64). Predictions of the Cirrus model on the original
Spectralis-scans (no translation) are denoted in yellow (d,h).

Fig. 6. Quantitative results of intra-retinal cyst (IRC) segmentation, obtained on (a-b) Cirrus
and (c-d) Spectralis scans. For different translation strategies Precision, Recall and Dice are
shown together with the corresponding box-plots of Dice values. Native upper-bound models
are indicated by * in (a-b). The CycleGAN model with highest mean Dice is highlighted in
dark blue (b,d).

native Cirrus models was lower than of their Spectralis counterparts, with the larger difference
for the SRF class.
For the IRC class, the cross-vendor evaluation of both segmentation models (Spectralis and

Cirrus) on the non-translated datasets showed a clear performance drop (Fig. 6), especially on
the Cirrus test set (Fig. 6(a-b)). There, all applied translation strategies significantly improved
the cross-vendor segmentation model performance with respect to the ’no translation’ scenario
(p << 0.05). The approach with the highest Dice was the cycleGAN model trained with image
patches of 256 × 256 (CycleGAN256). This model showed a significantly better performance
both compared to the T1 and T2 baseline approaches (p < 0.05). Finally, the tests did not yield a
significant difference between the best translation model (CycleGAN460)) and the ’no translation’
scenario in the Spectralis test set (Fig. 6(c-d).
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Fig. 7. Quantitative results of sub-retinal fluid (SRF) segmentation, obtained on (a-b) Cirrus
and (c-d) Spectralis scans. For different translation strategies Precision, Recall and Dice are
shown together with the corresponding box-plots of Dice values. Native upper-bound models
are indicated by * in (a-b). The CycleGAN model with highest mean Dice is highlighted in
dark blue (b,d).

Fig. 8. Quantitative results of layer segmentation, obtained on (a-b) Cirrus and (c-d)
Spectralis scans. For different translation strategies Precision, Recall and Dice are shown
together with the corresponding box-plots of Dice values. Native upper-bound models are
indicated by * in (a-b). The CycleGAN model with highest mean Dice is highlighted in dark
blue (b,d).

We also observed a performance drop in the cross-vendor evaluation of the SRF class when no
translation was applied, where this drop was more prominent in the Cirrus test set (Fig. 7(a-b)).
There, all the translation models showed an improvement with respect to the scenario without
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translation (p << 0.05). The best performing cycleGAN model was trained with images patches
of 256 × 256 (CycleGAN256), showing a significantly better performance than the T1 and T2
baseline translation algorithms (p < 0.05). Notably, the CycleGAN256 model performed on a par
with the upper-bound Cirrus-on-Cirrus model (p = 0.37). In the Spectralis test set (Fig. 7(c-d)),
the CycleGAN256 model achieved a higher mean Dice and a lower variance compared to the ”no
translation” scenario. However, a significant difference between the distributions was not found
(p = 0.18).

4.2. Photoreceptor layer segmentation results

Results for the photoreceptor layer segmentation task are summarized in Fig. 8. The upper-bound
models obtained a Precision, Recall and Dice in the Cirrus (Spectralis) test set of 0.88 (0.89),
0.91 (0.89) and 0.89 (0.90). A drop in Dice was observed for both segmentation models
when no translation was used for both translation directions. The decrease was larger in the
Cirrus test set (0.90 to 0.56). Moreover, the cross-vendor evaluation showed that all applied

Fig. 9. Box plots illustrating the amount of correctly identified “fake” B-scans, when
showing the original/translated pairs to the participants (OCT readers (n = 6), computer
scientists (n = 6), ophthalmologists (n = 6)). The amount of identified “fake” Spectralis
B-scans for the Cirrus-To-Spectralis translation is shown in the top row for (a) all participants
and (b) stratified by expertise background. The amount of identified “fake” Cirrus B-scans
for the Spectralis-To-Cirrus translation is shown in the bottom row for (c) all participants
and (d) stratified by expertise background.
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translation strategies significantly outperformed the “no translation” scenario in the Cirrus test
set (p << 0.05, Fig. 8(a-b)). The best result in terms of Dice was obtained by CycleGAN128,
showing a significantly better performance than T1 and T2 (p << 0.05). In the Spectralis test set
(Fig. 8(c-d)), the CycleGAN64 based translation achieved the highest Dice (0.88), significantly
outperforming the “no translation” scenario (p < 0.05).

4.3. Visual Turing test results

The results of the first visual Turing task involving an original/translated image pair (see Section
3.3) are summarized in Fig. 9, showing the percentage of identified “fake” Spectralis B-scans for
the Cirrus-to-Spectralis translation in Fig. 9(a-b) and the percentage of identified “fake” Cirrus
B-scans for the Spectralis-to-Cirrus translation in Fig. 9(c-d). Note that a value equal to 0.5
would correspond to a scenario in which the participant randomly select any of the B-scans as
fake, meaning that the transformed images could not be distinguished from the original scans by
the participants.

When evaluating the median of the amount of identified “fake” images in the (CycleGAN128
/ CycleGAN460) models across all participants, a difference was found in both the median
identification rate of the Cirrus-to-Spectralis (0.97 / 0.73) and the Spectralis-to-Cirrus (0.83 /
0.8) translations. This means that the images that were generated by the CycleGAN460 model
were harder to identify than the images generated with the CycleGAN128 model. A paired
one-sided Wilcoxon signed-rank significance test found that the difference in both directions
was significant (p << 0.05 in the Cirrus-to-Spectralis and p < 0.05 in the Spectralis-to-Cirrus
direction). This is also reflected in Fig. 9(b), where for each expert group the generated “fake”
Spectralis B-scans of the CycleGAN460 model were harder to identify than generated B-scans
of the CycleGAN128 model. However, this effect was less pronounced in the other translation
direction (Spectralis-to-Cirrus, Fig. 9(d)). Finally, we can observe that the ophthalmologists
showed a lower variance compared to the other expert groups.

Quantitative results of the second visual Turing task (Fig. 10) are showing the distribution of
the MPS for both the CycleGAN128 and CycleGAN460 model as well as for both translation
directions. For the Cirrus-to-Spectralis translation, the median MPS was significantly higher
for CycleGAN128 (median MPS=5) than for CycleGAN460 (median MPS=4), with p << 0.05.

Fig. 10. Boxplot of the morphology preservation scores (MPS) assigned by the ophthal-
mologist group to the original/translated B-scan pair. Top: Cirrus-to-Spectralis translation
(N = 180). Bottom: Spectralis-to-Cirrus translation (N = 180).
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The same trend can be observed for the Spectralis-to-Cirrus translation (p < 0.05), although the
median MPS was the same for both cycle-GAN models (median MPS=5). In summary, these
results clearly indicate that the CycleGAN128 model introduced fewer morphological changes
during the translation compared with the CycleGAN460 model, for both translation directions.
Exemplary qualitative results for introduced morphological changes are shown in Fig. 11.

Fig. 11. Left: Original B-scan and a zoomed-in region of interest (6× original size).
Right: Translated B-scan with the same zoomed-in region of interest. Regions that were
identified as morphological differences by the experts are highlighted in cyan. First row:
Spectralis-to-Cirrus translation. Second and third row: Cirrus-to-Spectralis translation.

5. Discussion

The main hypothesis of our work was that unsupervised cycleGAN based translation algo-
rithms would allow to significantly reduce the covariate shift phenomenon in automated retinal
segmentation models across different OCT acquisition devices. Our results show that these
translation approaches indeed allowed deep learning models to improve its generalization ability
in cross-vendor OCT images unseen at training stage. In all the evaluated segmentation tasks
the effect of the covariate shift phenomenon was larger when using Spectralis models on the
Cirrus test set than when using Cirrus models on the Spectralis test set, without any translations
(Figs. 6(a-b), 7(a-b) and 8(a-b)). A possible explanation may be that the Spectralis segmentation
model could not deal with the lower SNR in Cirrus scans, e.g. due to the noise in the fluid regions
appearing much brighter than in Spectralis images. Cirrus models seemed to be more resilient
against the covariate shift phenomenon when applied on Spectralis scans, showing a smaller but
still significant performance drop compared to the upper bound (Figs. 6(c-d), 7(c-d) and 8(c-d)).

In most of the segmentation tasks and translation directions (Cirrus-to-Spectralis or Spectralis-
to-Cirrus), we found that the cycleGAN-based translation models trained with image patch size
of 256 × 256 improved significantly or slightly – depending on the translation direction and
segmentation task – the performance of the segmentation models, with respect to a scenario
without any translation. However, each task and translation direction had a different optimal
training image patch size. In the fluid segmentation task, in which the objective is to identify
hypo-reflective black regions, the best performance was obtained with larger image patch sizes
(256 × 256, 460 × 460). In contrast, for the photoreceptor layer segmentation task, in which the
aim is to detect a thin layered region, the best performance was obtained with smaller image
patch sizes (64 × 64, 128 × 128). One factor explaining these results may be the size of the
structures that are segmented. Larger structures seem to require larger training image patches for
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the cycleGAN to capture the needed contextual information. Thus, the segmentation models may
focus more on the global appearance (context) when segmenting larger structures, meaning that
in this case it may be more important to reduce the covariate shift effect on a ”global appearance
level” rather than on a local one. Additionally, using larger patches in the training stage allowed
the translation models to generate more realistic images at test time. However, those models
were also more likely to introduce image artifacts in the translated B-scans. This was empirically
demonstrated in the visual Turing test, as discussed in the next paragraphs.
The first part of the visual Turing test was conducted to evaluate the realism of the generated

B-scans. This part of the visual Turing test was inspired by [33], but our set-up constituted a
more stringent assessment, since it not only required the participants to judge the “realism” of
the generated images but also enabled a direct comparison with the original image. The main
finding of this test was that using larger image patch sizes during training of the cycleGAN-
based models resulted in more “realistic” translated B-scans (Section 3.3). The results of the
visual Turing test showed that it was harder to identify the CycleGAN460 generated “fake”
images both in Spectralis-to-Cirrus and Cirrus-to-Spectralis directions (Figs. 9(a,c)). This
may be related with the above mentioned theory that larger patches during training allow to
learn more complex/realistic translations and reduce the covariate shift effect also on a ”global
appearance level”. When observing the percentage of identified “fake” B-scans stratified by
expertise background (Figs. 9(b,d)), we found that the ophthalmologist group seemed to perform
consistently in identifying “fake” images generated by the CycleGAN128. This result might
indicate that their knowledge about retinal structures and B-scan appearance in general helped
them to robustly identify ”fake” images. However, this advantage was no longer evident for the
CycleGAN460 model. Some of the reported cues the ophthalmologists and OCT readers used for
identifying fake B-scans were the quality of choroid tissue, the vitreous border or the smoothness
of retinal layer borders. Conversely, participants of the CS OCT researchers group reported
relying more on visual cues based on differences in pre-processing operations used by the OCT
acquisition devices (i.e quality of the B-scan filtering, B-scan tilt correction.
The results of the second part of the visual Turing test illustrate that translation models

trained with smaller image patch sizes generate a smaller amount of retinal morphological
differences in the translated images. An explanation of this phenomenon might be that training
translation models with a smaller patch size results in more conservative (simpler) translations
less likely to introduce artifacts (but also less realistic). In particular, the MPS distribution for
the CycleGAN460 models (in both directions) had a significantly larger number of decisions
rating the image pairs as having strong morphological differences (1 − 3) than that observed
for the CycleGAN128 model. This indicates that models trained with larger patch sizes are
prone to induce artifacts in the generated images. Additionally, the amount of perceived retinal
anatomical differences also depended on the direction of the translation. When translating from
Cirrus-to-Spectralis a slightly larger number of morphological differences were identified than in
the B-scans translated from Spectralis-to-Cirrus.

We conjecture that translating from a low-SNR to a high-SNR B-scan required the translation
models to “invent” information that was not present in the source image, meaning that the lower
the signal-to-noise ratio the more likely it is that image artifacts are introduced. Moreover, we
empirically observed that the quality of the input images was also a factor for the quality of
the translated images. For instance, an extremely low contrast B-scan from any of the OCT
vendors would likely generate a low quality B-scan after the translation. An example of such
a case is presented in the first row of Fig. 11. We also found qualitatively that a substantial
amount of regions highlighted by the ophthalmologists as artifacts were related to the border of
the layers delimiting the retina. For instance, changes in the appearance of the bottom layers
were observed in the two lower rows of Fig. 11. In the second row, the generated Cirrus B-scan
attenuates/removes one of the layers observed in the original Spectralis B-scan. In the third row,



Research Article Vol. 11, No. 1 / 1 January 2020 / Biomedical Optics Express 361

the appearance of the retinal pigment epithelial (RPE) layer seemed to be altered in the translated
Spectralis B-scan compared to the Cirrus original counterpart.

6. Conclusion

In this work, we presented an unsupervised unpaired learning strategy using cycleGAN to reduce
the image variability across OCT acquisition devices. The method was extensively evaluated in
multiple different retinal OCT image segmentation tasks (IRC, SRF, photoreceptor layer) and
visual Turing tests. The results show that the translation algorithms improve the performance
of the segmentation models on the target datasets coming from a different vendor than the
training set, thus effectively reducing the covariate shift (the difference between the target and
source domain). This demonstrates the potential of the presented approach to overcome the
limitation of existing methods, whose applicability is usually limited to samples that match the
training data distribution. In other words, the proposed translation strategy allows to improve
the generalizability of segmentation models in OCT imaging. Since automated segmentation
methods are expected to be part of routine diagnostic workflows [8] and could affect the therapy
of millions of patients, this finding is of particular relevance. Specifically, the presented approach
could help to reduce device-specific dependency of DL algorithms and therefore facilitate their
deployment on a larger set of OCT devices.

Furthermore, results indicate that the training image patch size was an important factor for the
performance of the cycleGAN-based translation model. Larger training image patch sizes usually
resulted in models whose generated B-scans were more realistic, i.e., more difficult to identify as
“fake” by human observers. However, such images were more likely to contain morphological
differences in comparison with the source images. These results indicate that special care should
be taken to reduce the likelihood of introducing morphological artifacts. Besides matching the
pathological distributions across the domains in the cycleGAN training stage [34], a good practice
may be to reduce the complexity of the learned translation by using smaller patch sizes, as there
seems to be a trade-off between the “realism” and the quality of the translation models. In this
context, future work should be focused on evaluating different architectures and/or loss-functions
to address the problem of cross-vendor translation while preserving retinal anatomical features in
the OCT image.
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