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A B S T R A C T   

Single subject VBM (SS-VBM), has been used as an alternative tool to standard VBM for single case studies. 
However, it has the disadvantage of producing an excessively large number of false positive detections. In this 
study we propose a machine learning technique widely used for automated data classification, namely Support 
Vector Machine (SVM), to refine the findings produced by SS-VBM. A controlled set of experiments was con-
ducted to evaluate the proposed approach using three-dimensional T1 MRI scans from control subjects collected 
from the publicly available IXI dataset. The scans were artificially atrophied at different locations and with 
different sizes to mimic the behavior of neurological disorders. Results empirically demonstrated that the pro-
posed method is able to significantly reduce the amount of false positive clusters (p < 0.05), with no statistical 
differences in the true positive findings (p > 0.05). This evidence was observed to be consistent for different 
atrophied areas and sizes of atrophies. This approach could be potentially be applied to alleviate the intensive 
manual analysis that radiologists and clinicians have to perform to filter out miss-detections of SS-VBM, 
increasing its usability for image reading.   

1. Introduction 

Alzheimer’s disease (AD) [1], Frontotemporal Lobar Degeneration 
(FLD) [2] and Medial Temporal Lobe Epilepsy (MTLE) [3] are brain 
disorders associated with grey matter (GM) reduction in the temporal, 
parietal and/or frontal lobes. Voxel Based Morphometry (VBM) [4,5] is 
a brain image analysis methodology that has been widely utilized in the 
context of medical research on these diseases for the last two decades. 
Based on Magnetic Resonance Imaging (MRI), VBM plays a key role to 
understand the brain atrophy patterns that are relevant for these brain 
disorders [1–3,6–10]. 

VBM statistically compares voxels between two groups of MRI scans 
to determine if there exists differences in brain tissues densities between 
two groups. The output of VBM is a Statistical Parametric Map (SPM), 
where each voxel corresponds to the result of its associated test and 
therefore to the difference in densities of both groups for that specific 
voxel (Fig. 1(A)). Combining adjacent groups of voxels highlighted as 
statistically different by VBM allows to pose hypothesis and draw 

conclusions regarding the underlying anatomy of the groups. By defi-
nition, VBM relies on two comparison groups and can only be applied to 
assess their differences in tissue density. As a result, it has no direct 
application in daily clinical practice, e.g. to study differences between 
an individual and a comparison group. 

Single subject VBM (SS-VBM) [11], also referred to as single case 
VBM [12,13] or individual VBM [14], has been presented as an alter-
native to standard VBM for single case studies, where a single subject is 
compared to a control group (Fig. 1(B)). Several articles have been 
published in recent years applying SS-VBM to identify regions of grey 
matter reduction [13,15,16]. Hedderich et al. [15] demonstrated the 
improvement in diagnostic accuracy and inter-rater agreement between 
experts using a combination of SS-VBM and total intracranial volume. 
Suzuki et al. [13] used SS-VBM to find characteristic patterns of volume 
loss to differenciate patients with chorea-acanthocytosis and Hunting-
ton’s disease. SS-VBM has also been used in the study of functional MRI. 
In particular, Roswandowitz et al. [16] used it to asses behavioural 
differences in functional MRI on patients with apperceptive and 
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associative phonagnosia. 
Since its introduction in 1999 [17], several authors investigated 

methodological alternatives to improve SS-VBM performance. Salmond 
et al. [18] assessed the relation between the false-positive rate and the 
smoothing applied to the images. More recently, Muhlau et al. [11] 
described the usage of one- and two-sample t-tests to preserve statistical 
validity. 

The main disadvantage of SS-VBM is that, being restrained to 
comparing a single individual to a group, it cannot distinguish between 
pathological grey matter reduction and normal/anatomical inter-subject 
variability. This issue has been previously studied, for instance, by 
applying SS-VBM on healthy subjects, where a high number of signifi-
cantly different densities are detected by the method [12,19]. These 
“false detections” do not follow a single, easy to recognise pattern, such 
as a predominant region of occurrence or a specific size. This makes 
difficult to identify and discard such false detections when analyzing the 
results. Some preliminary solutions to this problem have been studied in 
the past. Scarpazza et al. [20], for instance, found that the voxel-wise 
GM density might not follow a normal distribution, and therefore a 
non-parametric statistical test might be more suited than a classic two- 
sample t-test. Chen et al. [21] developed a different approach to single 
subject, combining classic VBM results with machine learning for 
detecting increased and reduced GM volume. 

Machine learning (ML) [22] refers to a family of artificial intelli-
gence methodologies that allows to automatise human tasks by training 
a computerised model using a set of training samples. Support vector 
machine (SVM) is a supervised learning technique widely used for 
automated data classification [23]. Given a set of training samples, the 
model automatically learns the best way to separate them according to 
their known, manually annotated, classes and each samples’ features. 
These features correspond to numerical representations of predefined 
characteristics for each example. During training, the hyperplane that 

better separates them in the multidimensional feature space is found. At 
test time, this hyperplane is used to identify the class associated with 
new given input samples whose classes are unknown. 

In this paper we propose to use a SVM model to classify clusters 
resulting from SS-VBM into atrophies (AT) and not-atrophies (NAT). Our 
aim is to enhance the applicability of SS-VBM, e.g. for radiological 
reading, by automatically identifying false positive responses and pre-
serving the true detections of the SS-VBM method. To ensure a proper 
and controlled evaluation of the proposed approach, our study is con-
ducted using real brain MRI scans of control subjects on which grey 
matter atrophies were artificially introduced using simulation [24]. We 
then generated synthetic atrophies at specific locations of the brain to 
model the effect of different relevant disorders on GM density. This 
allowed us to know in advance the exact location of GM density alter-
ations, which provided a ground truth for later assessment. 

2. Method 

2.1. Subject data 

One hundred control subjects without known pathologies were 
evaluated in our study, all of them collected from the Hammersmith 
Hospital group of the IXI data set (http://brain-development.org/ixi 
dataset/) (46 females / 54 males, age 35 ±9 years, ranging from 20 to 
54 years). Their associated 256×256×128 MRI volumes correspond to 
T1 weighted images acquired using an Philips Intera 3 T (Philips Medical 
Systems, Best, The Netherlands) scanner at a voxel resolution of 
0.9375×0.9375×1.2 mm3, with a repetition time of 9.6 msec, echo time 
of 4.6 msec, 208 phase encoding steps, echo train length of 208, 
reconstruction diameter of 240.0 mm, and a flip angle of 8◦. 

Fig. 1. VBM is a methodology for brain MRI analysis that statistically compares two groups of images at a voxel level. (A) The standard VBM approach compares two 
groups of subjects and the output is a Statistical Parametric Map (SPM) indicating the statistical significance of the differences between groups at each voxel. (B) 
Alternatively, SS-VBM statistically compares a single subject to a group, providing a SPM that reports for each voxels in the subject’s MRI if there is a significantly 
different tissue density with respect to the group. VBM voxel based morphometry, SS-VBM single subject voxel based morphometry, SPM statistical parametric map. 
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2.2. Atrophy simulation 

The healthy subjects used in our study were artificially atrophied 
using the simulation software described in [24,25]. The simulator takes 
an input brain MRI scan and recreates an atrophy by shrinking the GM 
tissue in a specific location. As input it requires both, the 3D MRI image 
where the atrophy will be simulated, and a segmentation mask of the 
GM, white matter (WM) and cerebrospinal fluid (CSF). A spherical area 
is defined based on a given three-dimensional point and a given radius. 
A deformation force indicating the shrinking strength is applied on the 
area to simulate the atrophy. In our study we set this shrinking force 
parameter to 0.7, as suggested in the software documentation. 

Three different locations were chosen to simulate atrophies on each 
subject, namely the hippocampus (HP), the parietal lobule (PL) and the 
superior frontal gyrus (SFG). These regions were selected due to their 
relevance to specific neurodegenerative diseases, more specifically 
Alzheimer’s disease, Medial Temporal Lobe Epilepsy and Fronto-
temporal Lobar Degeneration, respectively. For each subject, a total of 9 
images with synthetic atrophies were derived by combining the three 
anatomical locations and the three atrophy sizes (20, 30 and 40 mm, 
Fig. 2). 

2.3. Single subject voxel based morphometry (SS-VBM) 

2.3.1. Preprocesing workflow 
SS-VBM requires to preprocess the MRI datasets before performing 

statistical testing. First, each image was segmented into CSF, WM and 
GM, using the default segmentation functionality provided by SPM12 

(Wellcome Trust Centre for Neuroimaging; http://www.fil.ion. 
ucl.ac.uk/spm/software/spm12/) running on Matlab (version 
9.5.0, The MathWorks, Inc., Natick, USA). Only the GM tissue mask was 
used afterwards. A DARTEL template was created based on the original 
healthy GM segments to standardise all the subjects to a common 
reference space [26,27]. Flow fields were then generated for each sub-
ject, based on the created template, to register all of the GM segments. 
Finally, the resulting images were smoothed with a Gaussian kernel 
(σ=4 mm). 

2.3.2. Statistical testing 
We used two-sample t-tests in accordance to previous literature in 

the field [11]. In SS-VBM a single subject, playing the role of group 1 in 
standard VBM, is compared to several subjects, represented by group 2. 
A statistical test comparing each patient with simulated atrophies with 
the control group was performed, obtaining a SPM per individual. In 
each test, the analysed subject was removed from the control group to 
avoid comparing with its own healthy version. Additionally, age and sex 
were used as covariates for the test. The GM values extracted from the 
segmentation, in the range [0,1], were masked using an absolute 
threshold of 0.2. A statistical threshold of p < 0.05 was used, corrected 
with False Discovery Rate (FDR) from the implementation of CAT12 
toolbox (Structural Brain Mapping Group; www.neuro.uni-jena. 
de/cat/). 

The process described above was applied to each synthetically 
atrophied image, and compared to the healthy subjects (controls) group. 
The same process was performed for the healthy counterparts to estab-
lish a baseline for normal inter-subject anatomical variations. 

Fig. 2. Qualitative examples of simulated atrophies (highlighted in pink). From top to bottom: sagittal planes of the segmented GM from the same subject, zoomed on 
the HP (temporal lobe), the PL (parietal lobe) and the SFG (frontal lobe), respectively. From left to right: original healthy subject and simulated atrophies of sizes 20, 
30 and 40 mm, respectively. Yellow arrows indicate the regions in which the atrophies are more evident. GM grey matter, HP hippocampus, PL parietal lobule, SPG 
superior frontal gyrus. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.4. Machine learning based cluster classification 

Machine learning classification allows to automatically discriminate 
samples into different categories by discovering patterns in their fea-
tures’ distribution. Support Vector Machine (SVM) is a supervised 
learning technique widely used in computer science for data classifica-
tion. Data samples are represented with feature vectors that determine 
their characteristics. Such features define a multidimensional space 
where each sample can be placed. Given a set of training samples and 
their known labels, a SVM model optimises a series of parameters to 
learn the hyperplane that better separates the categories in the feature 
space. This is done by minimising an objective function that penalises 
miss-classifications on the training set. In test time, the model classifies 
each new sample based on its location in the feature space with respect 
to the learned hyperplane. Furthermore, the signed Euclidean distance 
of the sample to the hyperplane can be interpreted as a score indicating 
the likelihood of belonging to the positive class. Scores above a certain 
threshold (generally 0) are labelled as belonging to the positive class, 
while those below the threshold are classified as negative samples. 

We use this model to identify clusters that were miss-interpreted by 
SS-VBM as potential atrophies when being actually normal deviations in 
anatomy. Hence, our classification samples are the clusters obtained 
from SS-VBM tests, and we train a SVM model to classify them as actual 
atrophies (AT, positive class) or not-atrophies (NAT, negative class). 

2.4.1. Data labelling 
As mentioned in Section 2.3.2, two SS-VBM analysis were performed 

on each subject: one testing the differences between the original healthy 
image with the control group (Fig. 3(A)), and a second one between the 
image with synthetic atrophies and the control group (Fig. 3(B)). The 
second test was done to retrieve the set of clusters to be classified, while 
the former one was performed to determine which clusters were actually 
NAT. 

Ground truth labels for AT and NAT clusters were assigned following 
a two-tier criterion (Fig. 3). To this end, both the original healthy MRI 
(Fig. 3(A)) and its synthetically atrophied counterpart (Fig. 3(B)) were 

compared using SS-VBM with respect to the control group. Two sets of 
clusters were identified, namely H (clusters detected in the healthy 
subject) and A (clusters detected in the atrophied counterpart). A cluster 
a ∈A was labelled as AT if and only if: (1) it lied within the region of the 
original MRI synthetically altered by the simulation procedure; and (2) 
it showed no coincidences with any other cluster h ∈H. For the latter, 
two clusters h ∈H and a ∈A were assumed to be coincidences if their 
local maxima were too close to one another (less than 6 voxels apart, as 
measured by the Euclidean distance), and if they shared voxels (spe-
cificaly, more that 30% of voxels in the cluster). 

2.4.2. Algorithm setup 
Being SVM a supervised learning model, a training set is required to 

learn the model parameters. To this end, each dataset corresponded to a 
specific atrophy size and atrophy region and were randomly divided in a 
training and test sets, comprising 70 and 30 images, respectively. During 
the training step, 10-fold cross-validation was used on the training set 
for model selection and calibration, randomly splitting every fold into 
70% for training and 30% to validate the performance of each specific 
configuration. 

Accordingly, for each atrophy size and region, a SVM model was 
trained. We refer to these as single size models (SS models). Further-
more, three additional models were trained, one per atrophied region, 
combining all corresponding atrophy sizes. We refer to them as multiple 
size models (MS models). 

Each cluster was represented by 11 different features obtained either 
from the SS-VBM output or from the prepocessed GM segmentation, as 
described in Table 1. Features were standardised to zero mean and unit 
variance using their own mean and standard deviation, as estimated 
from the training set. 

We used the SVM implementation provided by the Statistical and 
Machine Learning Toolbox from Matlab. Hyperparameters of the SVM 
model, namely the scale of the radial basis function of the kernel and the 
box constraint, were fixed using a Bayesian Optimisation approach 
provided in that implementation. 

A large number of NAT clusters were observed in our training set. As 

Fig. 3. Ground truth AT and NAT label assignment for SS-VBM detected clusters. (A) Clusters identified by the SS-VBM test on the original healthy image, cor-
responding to the subject 1 vs. the rest of the control group. These clusters were used to identify cluster coincidences for that individual. (B) Clusters identified by the 
SS-VBM test on the simulated atrophy image of subject 1 vs. the control group. Each of these clusters was checked for coincidence with the clusters on healthy 
subjects. In this example, cluster a5 shared less than 30% of its volume with cluster h5 and their local maxima were more than 6 voxels apart, so a5 was labelled as 
AT. Cluster a4 shared more than 30% of its volume with cluster h4 and its local maxima were less than 6 voxels apart, then a4 was labelled as NAT. Clusters a6, a7 
and a8 were within the atrophy region and had no coincidences, so they were labelled as AT. Clusters a1, a2 and a3 were outside the atrophy region and were labelled 
as NAT. (C) Representation of an ideal filtering result for subject 1, where only AT were preserved and NAT were filtered out. 
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SVM models trained with imbalanced data sets are prone to be biased 
towards the majority class [28], the Different Error Costs technique was 
used to alleviate this effect. Hence, the cost of miss-classifying the mi-
nority class was set to 1 and the cost of the majority one fixed to the class 
ratio on the training set. 

2.4.3. Evaluation metrics 
The aim of this work is the reduction of NAT clusters in SS-VBM. 

First, we analysed the number of NAT clusters miss-detected per sub-
ject by SS-VBM and by the SVM models. Those were compared using 2- 
sample Kolmogorov-Smirnov tests, as none of the assumptions of the t- 
test were hold. Normality was checked using a Shapiro–Wilks test, and 
homoscedasticity was verified using Fisher test, with both of them 
resulting negative (p > 0.05). The same verification process was repli-
cated for the distribution of the number of atrophy clusters correctly 
detected. 

The metrics used to evaluate the classification performance of the 
SVM models were the receiver operating characteristic (ROC) curve and 
the area under the ROC curve (AUC-ROC). We used Star [29] to compare 
the ROC curves between the SS and MS models. Additionally, standard 
binary classification metrics such as sensitivity, specificity, precision, 
balanced accuracy and F1 score were reported, in accordance to the 
following equations: 

Sensitivity =
TP

TP + FN
(1)  

Specificity =
TN

TN + FP
(2)  

Precision =
TP

TP + FP
(3)  

Balanced Accuracy =
Sensitivity + Specificity

2
(4)  

F1 Score =
2 × Sensitivity × Precision

Sensitivity + Precision
(5)  

where TP, TN, FP and FN correspond to the number of true positive, true 
negative, false positive and false negative classifications, respectively. 
Sensitivity and specificity measure the ratio of detected AT and NAT, 
respectively, while precision refers to the ratio of correctly detected AT. 
Balanced accuracy indicates the percentage of correctly classified clus-
ters. F1 score is defined as the harmonic mean of the sensitivity and 
precision and summarizes the overall AT detection performance. 

3. Results 

3.1. Cluster filtering 

Fig. 4 depicts the number of NAT clusters per subject in the test sets, 
as obtained by SS-VBM before (grey) and after filtering the AT clusters 
using the proposed SVM approach (coloured by model). Results are 
grouped by anatomical region and by atrophy size (Fig. 4(A), (B) and 
(C)). Notice that the results for the SS and SM models were both 
included. 

Similarly, Fig. 5 presents the number of correctly detected AT clus-
ters per subject as obtained by SS-VBM before (grey) and after filtering 
using the SVM models (also coloured by model). In all cases, the clusters 
were retrieved taking into consideration the training/validation/test 
partition at subject level. Hence, no overlap exists between subjects on 
the training, validation and test sets. 

The amount of NAT clusters after filtering with SVM models was 
significantly smaller than before (p < 0.05), regardless of the location of 
the simulated atrophies and their sizes. The differences between SS-VBM 
before and after SVM processing were not significant in the superior 
frontal gyrus for the MS model on the 30 mm atrophies test set (p = 0.1). 
On the other hand, the differences in the number of AT clusters detected 
before and after SVM filtering, were not significant in all the cases 
(p > 0.05) regardless the region or the size of the atrophy. 

3.2. Classification performance of the SVM models 

Table 2 shows the classification performance in the test sets, as ob-
tained by all the SVM models. Results are grouped by atrophy region and 
size. To assess the performance of different SVM models in relation with 
the atrophy size used during training, each test set was classified using 
the SS model of the corresponding atrophy size and the MS model, both 
trained on atrophies at the same region, and compared (e.g. the 20 mm 
test set was classified by the 20 mm SS model and by the MS model, and 
so on). Additionally, the test set with multiple atrophy sizes was clas-
sified using all the SS and MS models. The filtering results in all the 
anatomical regions were also evaluated using ROC curves, as depicted in 
Figs. 6, 7 and 8. 

In general, better results identifying AT and NAT were obtained for 
HP and PL compared to SFG. Although the sensitivity in SFG was higher 
than in HP and PL, specificity was remarkable lower, near to 0.5. In 
terms of sensitivity, specificity, precision and balanced accuracy, there 
was no predominant model. In the case of MS test sets, SS models ob-
tained better results for all metrics. Observing the F1 scores for the 
20 mm test set, values were lower than the rest of the test sets. For the 
AUC-ROC, SS models achieved higher values for the majority of the 
cases, but with a small margin. 

No statistically significant differences were observed between the 
ROC curves of SS and MS models in the single atrophy size test sets, 
regardless of the atrophied area. For the MS test sets, the 40 mm SS 
model performed similar to the MS model in all the anatomical regions 
(p > 0.05). The 30 mm SS model achieved similar results, with the 
exception of the PL region (p < 0.05). Conversely, the ROC curves for the 
20 mm SS models were significantly different to the MS models in all the 
anatomical regions (p < 0.05). 

3.3. Qualitative results 

Fig. 9 presents a qualitative analysis of the outputs of SS-VBM before 
and after AT filtering using the MS model. The GM density map corre-
sponds to an atrophy simulated image, generated with a radius of 40 mm 
in the HP. 

First, a ground truth label was generated for each cluster using the 
criteria described in Section 2.4.1. Five clusters were labelled as AT 
inside the simulated atrophy region (Fig. 9(A)). After the SS-VBM 
testing, the clusters in Fig. 9(B) were obtained. Notice that there were 

Table 1 
List of features extracted for each cluster.  

Feature No. Data source Description 

1 SS-VBM output Total number of voxels inside the cluster 
2 SS-VBM output Maximum value inside the cluster 
3 SS-VBM output Minimum value inside the cluster 
4 SS-VBM output Mean value inside the cluster 
5 SS-VBM output Median value inside the cluster 
6 SS-VBM output Standard deviation inside the cluster 
7 Pre-processed 

GM 
Maximum value of GM inside the cluster 

8 Pre-processed 
GM 

Minimum value of GM inside the cluster 

9 Pre-processed 
GM 

Mean value of GM inside the cluster 

10 Pre-processed 
GM 

Median value of GM inside the cluster 

11 Pre-processed 
GM 

Standard deviation value of GM inside the 
cluster 

SS-VBM single subject voxel based morphometry, GM grey matter. 
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clusters detected outside the atrophy region (white arrows) that were 
not in the ground truth image. 

Classifying the results with the MS model, we observed that the 
clusters outside the atrophy area were rated with the lowest scores while 
those inside were labelled with higher scores (Fig. 9(C)). After score 
thresholding, only the clusters within the atrophy region were classified 
as AT, except for one (see arrow in Fig. 9(D)). It can be seen that, by 
using a better adjustment of the score threshold, this cluster might be 
preserved. 

4. Discussion 

4.1. Filtering out NAT detection using SVMs 

As previously discussed in the literature, the main limitation of SS- 
VBM is that it produces outputs with high false positive rates [12]. 
This is partially due to the data requirements of classic VBM that are 
relaxed in SS-VBM: more concretely, two groups are compared to each 
other instead of a single individual to a group. Although alternative 
approaches, such as the one in Scarpazza et al. [20], proposed changing 
the statistical tests as a proxy to reduce this effect, these modifications 
have not been adopted as a standard [13,15,16]. In this study, we 
introduce an alternative approach to improve SS-VBM performance by 
filtering out the NAT clusters using a SVM classifier. We empirically 
observed that using this machine learning approach allows to signifi-
cantly reduce the number of NAT clusters by SS-VBM, without statisti-
cally affecting the number of detected AT clusters (Section 3.1). This 
observation is supported by the results presented in Figs. 4 and 5, and 
the corresponding statistical analysis. Therefore, the proposed SVM 
approach is expected not to affect the original performance of SS-VBM in 

terms of true positive detections, but most importantly to reduce the 
detected false positives. Notice, however, that the number of NAT is not 
reduced to zero in any case. This is not necessarily a problem or a lim-
itation. SS-VBM is meant as a complementary tool for clinicians and/or 
radiologists to perform brain image analysis, i.e., an experienced clini-
cian is expected to analyze SS-VBM results. In this sense, the proposed, 
novel filtering process should alleviate the reading task by drastically 
reducing the number of clusters to study. 

The reasons to use simulated atrophies in this study is twofold: first, 
to ensure having gold standard labels for each cluster, and second, to 
control which anatomical regions were affected. In particular, atrophies 
were simulated at the hippocampus (temporal lobe), the parietal lobule 
(parietal lobe) and the superior frontal gyrus (frontal lobe). These are 
the most affected regions in clinically relevant disorders such as Alz-
heimer’s disease, Frontotemporal Lobal Degeneration and Medial 
Temporal Lobe Epilepsy. It was experimentally observed that the 
filtering process using SVMs achieves similar performance, regardless of 
the anatomical region of analysis (Section 3.1). Notice, however, that 
each SVM model was trained using clusters produced by SS-VBM on 
images that were altered always on the same anatomical area. During 
model design, we observed a significant drop in performance when 
using cross-region classifiers (e.g. when evaluating a SVM model trained 
with atrophies detected in the HP area for detecting atrophies in the 
SFG, see Tables S1, S2 and S3 in the Online Supplementary Material). 

Hence, we recommend to train a different SVM model for specific 
anatomical regions or brain disorders, and then select the corresponding 
one depending on the target application. Reciprocally, a radiologist or 
clinical reader might integrate the responses of multiple classifiers and 
compare their outputs and scores to further refine the output. 

Another reason to justify the use of atrophy simulation is that it 

Fig. 4. Number of NAT clusters miss-detected per subject in the test sets, as obtained by SS-VBM before (grey box), after SVM filtering with SS models (yellow, green 
and blue boxes) and with the MS model (red box). From left to right: results in the data sets with atrophies simulated in (a) the hippocampus (HP), (b) the parietal 
lobule (PL) and (c) the superior frontal gyrus (SFG), with simulated atrophy sizes of 20 mm, 30 mm and 40 mm. HP hippocampus, PL parietal lobule, SPG superior 
frontal gyrus, NAT not-atrophy, SS single size, MS multiple size, SS-VBM single subject voxel based morphometry, SVM support vector machine. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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allowed us to produce atrophies with different sizes and intensities. This 
setting is extremely difficult to achieve using real atrophy cases, 
requiring a considerably large set of volunteers plus the labelling effort, 
which would be difficult to standardise and quantify. By producing 
synthetic atrophies, we have an effect that is highly reproducible and 
easy to quantify on the resulting images, allowing us to draw more 

accurate conclusions. The sizes of the atrophies were chosen based on 
the corresponding lobes volume, from a small atrophy affecting only a 
few regions to a big atrophy covering the majority of the lobe. 

In this sense, it is important to highlight that the proposed SVM 
filtering approach performed equally well regardless of the atrophy size 
(Table 2, Figs. 4 and 5). Furthermore, models trained with clusters from 

Fig. 5. Number of AT clusters correctly detected per subject in the test sets, as obtained by SS-VBM before (grey box), after SVM filtering with SS models (yellow, 
green and blue boxes) and with the MS model (red box). From left to right: results in the data sets with atrophies simulated in (a) the hippocampus (HP), (b) the 
parietal lobule (PL) and (c) the superior frontal gyrus (SFG), with simulated atrophy sizes 20 mm, 30 mm and 40 mm. HP hippocampus, PL parietal lobule, SPG 
superior frontal gyrus, AT atrophy, SS single size, MS multiple size, SS-VBM single subject voxel based morphometry, SVM support vector machine. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Classification performance of the SVM models in terms of binary classification metrics.  

Atrophy location Test set 20 mm 30 mm 40 mm MS 

SVM Model 20 mm MS 30 mm MS 40 mm MS 20 mm 30 mm 40 mm MS 

HP Sensitivity 0.765 0.794 0.857 0.902 0.862 0.804 0.547 0.687 0.887 0.813 
Specificity 0.810 0.716 0.834 0.737 0.765 0.803 0.847 0.852 0.696 0.740 
Precision 0.268 0.203 0.589 0.488 0.728 0.749 0.577 0.640 0.528 0.545 
Bal. Acc. 0.787 0.755 0.845 0.819 0.813 0.803 0.697 0.769 0.792 0.777 
F1 Score 0.397 0.323 0.698 0.633 0.789 0.775 0.562 0.662 0.662 0.652 
AUC-ROC 0.854 0.862 0.917 0.906 0.897 0.893 0.798 0.868 0.876 0.881 

PL Sensitivity 0.750 0.812 0.869 0.860 0.803 0.762 0.611 0.746 0.794 0.778 
Specificity 0.833 0.748 0.766 0.786 0.786 0.826 0.858 0.761 0.741 0.784 
Precision 0.282 0.220 0.497 0.517 0.678 0.711 0.579 0.500 0.495 0.536 
Bal. Acc. 0.791 0.780 0.817 0.823 0.795 0.794 0.734 0.754 0.767 0.781 
F1 Score 0.410 0.347 0.633 0.646 0.736 0.735 0.595 0.599 0.610 0.634 
AUC-ROC 0.880 0.886 0.899 0.914 0.882 0.872 0.798 0.840 0.872 0.869 

SFG Sensitivity 0.941 0.961 0.864 0.924 0.912 0.866 0.772 0.765 0.933 0.866 
Specificity 0.576 0.579 0.654 0.589 0.538 0.599 0.604 0.654 0.529 0.596 
Precision 0.230 0.234 0.460 0.434 0.568 0.590 0.436 0.467 0.440 0.459 
Bal. Acc. 0.759 0.770 0.759 0.757 0.725 0.733 0.688 0.710 0.731 0.731 
F1 Score 0.369 0.377 0.600 0.591 0.700 0.702 0.557 0.580 0.598 0.600 
AUC-ROC 0.864 0.820 0.841 0.835 0.814 0.796 0.761 0.805 0.813 0.802 

SVM support vector machine, MS multiple size, AUC-ROC area under the curve of the receiver operating characteristic, HP hippocampus, PL parietal lobule, SFG 
superior frontal gyrus, Bal.Acc. balanced accuracy. 
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atrophies from multiple sizes (MS models), performed similarly to the 
individual ones (SS models), except for the combined test set (Figs. 6, 7 
and 8), in which the MS model outperformed the others, or was the 
second best in its worst performance. This indicates that a MS model 
might be more suitable for a real clinical scenario where atrophies of 
different sizes are expected to happen. 

Complementary, all tests were performed using smoothing kernel 
widths of 2 mm and 6 mm. The results, evaluated in terms of the same 
metrics, were similar to those obtained using the 4 mm kernel (see 
Tables S4 and S5 in the Online Supplementary Material). The latter was 
chosen as it was the best in terms of the balance between the presented 
metrics. The 4 mm kernel width also guaranteed a larger number of 
patients with detections in the atrophy region. 

4.2. Potential clinical applications 

One potential clinical application for the proposed approach is to aid 
in MRI reading in population based studies. By means of SS-VBM, 

radiologists and physicians could obtain a first set of clusters indicating 
abnormal areas or potential atrophies. Subsequently, the proposed SVM 
approach would be used to assign each cluster a score and rank them 
according to the confidence of the model. Finally, clinicians would 
visually assess the data and decide if they should be ignored or further 
studied. 

4.3. Limitations 

The proposed approach is intended to filter out NAT clusters miss- 
detected by SS-VBM and, as such, it is not able to detect atrophies 
originally missed during the SS-VBM phase of the analysis. Hence, the 
sensitivity of the final model depends on the ability of SS-VBM to 
identify potential atrophy regions. Nevertheless, SS-VBM has proven to 
have high sensitivity with poor specificity so, in principle, it could be 
argued that SVM filtering will increase the specificity of the model by 
reducing the number of false positive detections. 

When analyzing the classification results at a cluster level (Table 2), 

Fig. 6. Classification results at the HP atrophy in the test sets composed only for single atrophy sizes of 20, 30, and 40 mm and the MS one, as measured by ROC 
curves. Classification was performed using SS models (20, 30 and 40 mm) and the MS models. SS single size, MS multiple size, HP hippocampus, PL parietal lobule, 
SPG superior frontal gyrus, ROC receiver operating characteristic. 
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it was observed that, although the sensitivity was high, the precision was 
low, hence affecting the corresponding F1 scores. This indicates that 
there is still a large amount of NAT clusters that are missclassified, 
mostly in cases with small size atrophies (e.g. 20 mm). We believe this is 
mostly a consequence of outlier cases exhibiting a larger number of NAT 
clusters than the general trend (see Fig. 4). Incorporating other features 
targetting other aspects of the cluster such as their density in specific 
regions of the brain might aid to alleviate this limitations. Nevertheless, 
it is worth mentioning that, when analyzing the results in a per patient 
basis (Fig. 4), the distribution of NAT clusters after the filtering process 
is significantly reduced with respect to the original SS-VBM counterpart, 
without significantly affecting the amount of AT clusters. 

Notice that one potential source of false positives could be the 
identification of normal variations in the anatomy. This is due to the fact 
that SS-VBM does not incorporate explicit constraints to limit the dis-
coveries only to pathological differences. Every anatomical structure 
can vary to a certain extent from the usual presentation, which does not 
necessarily render it abnormal or pathological. The identification of 
cerebral sulci is not straightforward. Interruptions and branches 
complicate the identification of the same sulcus in different brains. This 
poses difficulties for parcellating the cortex with automated methods. 

Often, variations are discovered in the structure, origin, branching 
pattern of sulci or presence of additional or accessory gyri, resulting in 
high inter- and intrasubject variability in radiological readings [30–32]. 
The importance of such anatomical variations in the clinical setting is 
based on the fact that they represent a variant of the normal presenta-
tion. They can present diagnostic dilemmas, affect surgical procedures 
or, in this case, be interpretated as AT clusters in the SS-VBM analysis. 
The incorporation of our SVM filtering stage might alleviate this issue, 
although it is out of the scope of this study. Future analysis should 
evaluate if the proposed method is able to reduce the amount of false 
positive clusters associated with non-pathological anatomical 
variations. 

From a machine learning point of view, it is worth mentioning that 
our proposed framework is general enough to be implemented using 
other classifiers and features. In this study we propose a proof-of- 
concept approach in which the combination of a relatively easy to 
compute set of features and a standard linear classification model is able 
to effectively reduce the number of false positive detections of SS-VBM. 
Future work could be focused on improving our results by applying 
ensemble based models such as Random Forests [33], using a larger set 
of image and non-image based features (e.g. computed from the original 

Fig. 7. Classification results at the PL atrophy in the test sets composed only for single atrophy sizes of 20, 30, and 40 mm and the MS one, as measured by ROC 
curves. Classification was performed using SS models (20, 30 and 40 mm) and the MS models. SS single size, MS multiple size, HP hippocampus, PL parietal lobule, 
SPG superior frontal gyrus, ROC receiver operating characteristic. 
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input MRI scan or even retrieved from clinical records). Furthermore, 
other more complex artificial intelligence approaches such as convolu-
tional neural networks [34] might be exploited to avoid manually en-
gineering features by learning them automatically. 

The results of this simulation based study supports this application 
scenario where the atrophy sizes used for training and testing were not 
random, like in clinical practice, but fixed values. Yet, a complementary 
evaluation with real cases is requiered to analyze if it is universally 
applicable. Notice, however, that one of the key difficulties of such study 
relies on the availability of gold standard labels indicating the areas with 
pathological GM anomalies. Previous studies have pointed out the dif-
ficulty of such analysis [35]. One way to overcome this limitation could 
be to appeal to the consensus of a board of experts to annotate the MRI 
scans, and take the majority voting of their responses as a ground truth 
label. Yet, this does not ensure a perfect gold standard annotation. As 
previously pointed out, the proposed evaluation based on synthetic at-
rophy allowed bypassing the need of these expensive annotations, 
ensuring an unbiased estimation of the model performance. 

5. Conclusion 

In this paper we introduced a machine learning based approach to 
remove false positive clusters from SS-VBM. Our careful evaluation on a 
series of artificially atrophied MRI datasets showed that the proposed 
method is able to significantly reduce the amount of false positive 
clusters identified by SS-VBM, while preserving the true positive find-
ings. These results were consistent for every atrophy region and size 
evaluated. Although further evaluation of true diseased cases is still 
needed, we envision that this approach could be applied in the future to 
provide objective information to alleviate the intensive manual analysis 
that radiologists and clinicians perform, by filtering out miss-detections 
by SS-VBM. 

Availability of data and material 

This study was conducted using MRI data from the Hammersmith 
Hospital subset of the publicly available IXI dataset, which is accessible 
through the following URL address: https://brain-development. 
org/ixi-dataset/. 

Fig. 8. Classification results at the SFG atrophy in the test sets composed only for single atrophy sizes of 20, 30, and 40 mm and the MS one, as measured by ROC 
curves. Classification was performed using SS models (20, 30 and 40 mm) and the MS models. SS single size, MS multiple size, HP hippocampus, PL parietal lobule, 
SPG superior frontal gyrus, ROC receiver operating characteristic. 
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