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ABSTRACT

Segmentation of brain arterio-venous malformations (bAVMs) in 3D rotational angiographies (3DRA) is still an
open problem in the literature, with high relevance for clinical practice. While deep learning models have been
applied for segmenting the brain vasculature in these images, they have never been used in cases with bAVMs.
This is likely caused by the difficulty to obtain sufficiently annotated data to train these approaches. In this paper
we introduce a first deep learning model for blood vessel segmentation in 3DRA images of patients with bAVMs.
To this end, we densely annotated 5 3DRA volumes of bAVM cases and used these to train two alternative
3DUNet-based architectures with different segmentation objectives. Our results show that the networks reach
a comprehensive coverage of relevant structures for bAVM analysis, much better than what is obtained using
standard methods. This is promising for achieving a better topological and morphological characterisation of the
bAVM structures of interest. Furthermore, the models have the ability to segment venous structures even when
missing in the ground truth labelling, which is relevant for planning interventional treatments. Ultimately, these
results could be used as more reliable first initial guesses, alleviating the cumbersome task of creating manual
labels.
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1. INTRODUCTION

Brain arteriovenous malformations (bAVMs) are an entanglement of abnormal vessels, produced when dilated
feeding arteries shunt blood directly into arterialised draining veins.1,2 If untreated, these pathological alterations
have an associated risk of hemorrhages, with significant morbidity and mortality rates.3 Indications for bAVMs
treatment vary according to its classification—depending on factors such as the nidus size, number of feeding
arteries and draining veins (hereinafter called structures of interest) and its anatomical location—and on whether
it is ruptured or not.4,5

Different imaging protocols are used depending on the clinical scenario.6 In non-traumatic settings, computed
tomography angiography (CTA) or magnetic resonance angiography (MRA) are frequently used as initial 3D
examinations, since they do not require catheterisation. For intraoperative assistance, 3D rotational angiography
(3DRA) provides high-resolution images of the vascular anatomy of the bAVM. In this study we focus on this
particular modality, which allows for a clearer definition of the structures of interest.1

Determining the morphology and topology of a bAVM using 3DRA allows to efficiently extract vital in-
formation for clinicians, such as size, shape, location and number of each of the structures of interest. The
adequate estimation of these morphological properties depends highly on the acquisition of a precise vascular
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segmentation. Computational techniques can help to alleviate the extremely tedious and time-consuming task of
manually delineating these structures. However, brain vessel segmentation remains an open problem, specially
in challenging scenarios such as bAVMs.7,8

As recently stated by Moccia et al.,9 the effectiveness of these methods is determined not only by the
algorithm itself but also by the imaging modality, the presence/absence of noise or artifacts, and the anatomical
region of interest. Moreover, assessment of the segmentation quality varies according to the task at hand. For
example, in applications such as simulating the deployment of intrasaccular devices for treating aneurysms,10,11

it is only required to have an accurate segmentation within the aneurysm region. Standard intensity-based
segmentation methods—such as thresholding or region growing—achieve good results in this setting because
relevant foreground voxels share uniformity. bAVM studies, on the other hand, require a robust coverage of
low-intensity distal vessels and of the noisy entanglement of the nidus and draining veins. While non-deep
learning-based alternatives have been proposed specifically for 3DRA images with bAVMs, these had either
scarce12 or no13,14 quantitative validation on real images, or rely heavily on user input,13 thus hampering their
reproducibility.

Deep learning approaches have been used on a wide variety of biomedical imaging problems,15,16 including
the segmentation of the brain vasculature. However, they are either applied on healthy vasculatures17,18 or in
images of subjects suffering from other conditions such as acute stroke and steno-occlusive disease.19 To the best
of our knowledge, no methods have been specifically introduced or designed for bAVM segmentation. We believe
this could be due to the difficulties in producing an appropriate training set for this task, as irregular blood
flow in bAVMs compromises the consistency of the contrast distribution.20 Thus, without enough morphological
references to rely on, manual annotation becomes tedious, extremely time-consuming and prone to errors and
high inter- and intra-observer variability. On the other hand, this also hampers the performance of standard
methods to produce first trustworthy initial guesses to work on, requiring an intense posterior polishing labour.
Furthermore, bAVMs are a rare condition, which reduces the number of available images to annotate. As a
result, collecting a large enough comprehensive data set with densely annotated scans for training deep models
becomes prohibitive.

In this paper we propose to overcome this limitation by introducing the first deep learning approach for
segmenting challenging bAVMs on 3DRA images. To this end, we densely annotated all brain vessel structures,
including feeding arteries, draining veins and the AVM nidus and fistulas, on a private dataset of 5 volumetric
3DRA scans of patients with bAVMs. The resulting dataset allowed us to perform a first comparative study of
segmentation performance in the context of bAVM analysis. By building on top of the self-adapting UNet model
introduced by Isensee et al.,21 we defined a 3D patch-based architecture trained with a combination of a standard
segmentation losses and a soft centerline Dice22 based objective. Despite being trained with a reduced amount
of data, our final model shows to be accurate enough to display the regions of interest of the bAVM, consistently
finding distal arteries and venous structures that sometimes were not even present in the actual ground truth.
Hence, this early model could be used to produce first initial guesses of the vasculature in a more trustworthy way,
easing the task of generating manual ground truth labels. Furthermore, it opens the way towards applications
such as achieving a better delineation of the nidus drainage, assisting transvenous interventional planning and
achieving a larger labelled dataset to train more robust solutions. This line of work holds clinical relevance as
it aims towards acquiring a quantitative assessment specific to each patient, which would ultimately allow for a
better treatment outcome.

2. METHODS AND MATERIALS

2.1 Dataset and image acquisition

Our dataset comprises 5 contrast-enhanced 3DRA scans of subjects with bAVM (3 assigned female at birth, with
ages ranging from 23 to 55 years), collected at the Changhai Hospital (Naval Medical University, Shanghai, P. R.
China) before interventional treatment. Data collection was approved by the clinical review board of this medical
institution. The images were acquired with a Siemens AXIOM-Artis LEO22541 station with an isometric voxel
size of 0.36mm–0.46mm, resulting in high resolution volumes of 397 to 511 slices of 512× 512 pixels each.
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Figure 1. Architecture of the proposed 3DUNet for brain vessel segmentation in bAVM cases. Inputs are patches of size
64× 64× 64 pixels, extracted from the normalised 3DRA volume. Downsampling is performed with strided convolutions
and upsampling with transposed convolutions. The last four layers of the decoder produce auxiliary segmentation outputs
that are used for deep supervision.

2.2 Segmentation model

2.2.1 Network architecture

All five volumes were cropped to the region of interest, removing sections without vasculature. Images were
upsampled to have a uniform spacing of 0.227mm across all cases. Volume voxels were also normalised according
to the mean and standard deviation of the intensities of each image.

Our network is based on the nnUNet21 framework, which allows to find optimal configurations of UNets23,24

for biomedical image segmentation by self-adapting them to heterogeneous datasets. We adapted the available
source code to train the UNet models with self-configured parameters, such as number of layers and convolutions,
as well as patch and batch size.

Due to the limited amount of samples, we trained five models to segment 3DRA images of bAVMs through a
leave-one-out cross-validation25 configuration. Given that our images are volumetric, using the whole angiography
as input to the network is computationally prohibitive, as the amount of RAM required to process the produced
feature maps exponentially surpassed our hardware disponibility. Additionally, patch-based training is a useful
strategy to maximise training data. Hence, to train a 3DUnet architecture as depicted in Figure 1, we used
patches of 64× 64× 64 pixels.

The encoder in our 3DUNet performs four downsampling operations with strided convolutions, starting with
32 kernels and duplicating them at each layer. The decoder uses transposed convolutions to upsample the input
feature maps. Each convolutional layer is followed by instance normalisation and leaky ReLU as a non-linearity.
Additional segmentation outputs are obtained from the last four layers for deep supervision.26

2.2.2 Loss function

Two different objectives were used for training, seeking the most adequate approach to segment the vessel
structures in images with bAVMs. Firstly, we followed a combined cross-entropy and Dice based loss approach,27

namely:
Lcombo = (1− α)LCE + αLDice,

where LCE represents the cross-entropy loss, LDice the soft Dice loss, and α ∈ [0, 1] the weighted contribution
of the Dice term to Lcombo. The Dice loss is widely used in the context of image segmentation, particularly
in presence of a class-imbalanced problem. As Dice is undefined when the target of interest is not present in
the image, the cross-entropy loss is added as an extra term to penalize errors in these cases and to provide
gradient stability. Furthermore, notice that, as the optimal value of Dice coefficient is 1 (given with absolute
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Figure 2. Schematic overview of the leave-one-out cross-validation training. Each case in turn is reserved to act as test
set. The network is trained then over the remaining four: three cases serving as training set and the last one as validation.
The result is set of five 3DUNets trained over our five annotated cases.

prediction-ground truth overlap), its value is internally multiplied by −1 to optimise the Dice loss function by
its minimum value.

Additionally, we defined a second loss function which includes a centerline-focused metric:

Lcombo+clDice = (1− α)LCE + α((1− β)LDice + βLclDice),

where LclDice is a soft centerline Dice loss function22 that favours overlap based on a centerline approximation and
vascular connection, instead of sparse voxel overlap. The soft centerline Dice coefficient is internally multiplied by
−1 to obtain its loss value. β ∈ [0, 1] is the weighted contribution of LclDice to the overlap term. We implemented
this function to work on 3D images, obtaining soft-skeletons based on pooling operations.

2.2.3 Experimental setup

In a leave-one-out cross-validation fashion as shown in Figure 2, each of the five models was trained using a
fixed batch size of 2 64× 64× 64 pixels patches randomly extracted from a set of 4 cases (3 volumes serving as
train set and 1 as validation). Initial learning rate of 0.01, stochastic gradient descent with Nesterov momentum
(µ = 0.99) for 250 epochs and loss weights α = 0.5 and β = 0.5. Test case prediction was done patch-wise
using a sliding window with 50% overlap, using Gaussian-window weights21 to merge all score maps into a single
volume and reduce stitching artifacts. Final binarisation of the score map was done with a fixed threshold of 0.5.
The models were trained on a station with 32GB RAM, Intel Core i5-8400 processor and using a GPU NVIDIA
GeForce RTX 3060 12GB.

2.3 Data annotation

Each study was retrospectively processed to produce reliable ground truth annotations of the brain vasculature
for both training and evaluating the proposed model. First initial guesses of the structures of interest were
obtained by semi-automatically segmenting the major arteries using empirically defined regions (similar to oc-
tree subdivisions) and threshold values (adjusted individually to each region). These annotations were heavily
corrected by hand by an engineer with cerebral angiographies analysis expertise, using the segmentation edi-
tor provided by 3D Slicer.28 The correction protocol consisted of adding missing branching vessels, separating
merged vessels, segmenting the AVM nidus and covering the venous drainage. The entire manual processing
took approximately 10-12 hours for each case. Exemplary ground truth labels are shown in Figures 3 and 4.

3. RESULTS

We evaluated the models both quantitatively and qualitatively, to account for the different aspects which could
be of interest considering the further study of the obtained segmentations.



Table 1. Quantitative results to a partial ablation study for each of the 5 cases over our two models: 3DUNetcombo trained
with Lcombo and 3DUNetcombo+clDice trained with Lcombo+clDice , evaluated in terms of Dice, Recall (Re) and Precision
(Pr) for all vessels and their centerline approximations.

Case Model Vessel Centerline
Dice Re Pr Dice Re Pr

Case 1
3DUNetcombo 0.83 0.82 0.87 0.87 0.90 0.85
3DUNetcombo+clDice 0.83 0.84 0.82 0.86 0.91 0.82

Case 2
3DUNetcombo 0.84 0.82 0.86 0.89 0.91 0.88
3DUNetcombo+clDice 0.84 0.83 0.85 0.89 0.88 0.90

Case 3
3DUNetcombo 0.82 0.86 0.78 0.82 0.94 0.73
3DUNetcombo+clDice 0.80 0.88 0.74 0.85 0.95 0.76

Case 4
3DUNetcombo 0.74 0.98 0.59 0.76 0.99 0.62
3DUNetcombo+clDice 0.72 0.98 0.57 0.78 0.99 0.64

Case 5
3DUNetcombo 0.70 0.68 0.71 0.72 0.77 0.67
3DUNetcombo+clDice 0.70 0.70 0.70 0.71 0.77 0.66

Table 2. Quantitative results obtained over all our cases using thresholding, region growing and our two 3DUNet models
trained with Lcombo (3DUNetcombo) and Lcombo+clDice (3DUNetcombo+clDice), evaluated in terms of mean ± standard
deviation to Dice, Recall (Re) and Precision (Pr) for all vessels and for their centerline approximations.

Method Vessel Centerline
Dice Re Pr Dice Re Pr

Threshold 0.66± 0.17 0.67± 0.28 0.78± 0.14 0.62± 0.19 0.66± 0.33 0.74± 0.18

Region Growing 0.63± 0.22 0.52± 0.24 0.93± 0.03 0.62± 0.29 0.52± 0.29 0.95± 0.03

3DUNetcombo 0.78± 0.05 0.83± 0.09 0.76± 0.09 0.80± 0.06 0.90± 0.07 0.75± 0.10

3DUNetcombo+clDice 0.77± 0.05 0.85± 0.09 0.74± 0.09 0.81± 0.06 0.90± 0.07 0.76± 0.09

3.1 Quantitative results

Quantitative results for each case are shown in Table 1, obtained using the proposed model trained with
Lcombo+clDice (3DUNetcombo+clDice) and its counterpart trained using only Lcombo (3DUNetcombo). For this
partial ablation study, both are evaluated using the overall structures of interest (vessels) and at centerline level
in terms of Dice, Recall (Re) and Precision (Pr). Centerline Dice values were computed based on scikit-image29

skeletonisations.

Average metrics over all our cases are presented in Table 2, including those obtained with two alternative
and standard segmentation methods, namely thresholding and region growing. To favour the reproducibility of
the experiments, we used the ITK 4.13.030 implementations. Threshold values were set by firstly computing
the Otsu threshold and correcting it empirically to reduce the amount of included noise. Region growing was
computed by manually selecting initial seeds inside the internal carotid artery, iterating twice with a statistical
membership criterion across an 8-connected neighbourhood with a standard deviation multiplier of 2.

3.2 Qualitative results

In a general overview, our 3DUNet models reached a higher discovery rate of the overall labelled vessel structures.
In Figure 3 we present projections of the segmentations achieved by the methods on each of the five cases, and
some relevant regions are shown enlarged in Figure 4. For most cases, thresholding and region growing missed
draining vessels and had an insufficient coverage of venous structures present in ground truth. For example:
ground truth for cases 1, 2 and 5 did not include some vein structures (like the jugular vein or sigmoid sinus)
that were segmented by the models; cases 1, 2, 3 and 5 show that our models found the superior sagittal sinus
while the standard segmentation methods missed it, just like the fistulas in cases 2 and 5; many distal arteries
were also segmented by the models but were not present in the ground truth, as can be observed in case 4.
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Figure 3. Qualitative results for each of the five cases. First column shows a volume rendering of the corresponding
case, followed by the segmentations achieved by thresholding, region growing, 3DUNetcombo and 3DUNetcombo+clDice.
Lastly, the manual annotations acting as ground truth. Volume projections correspond to sagittal or coronal orientations,
according to the AVM location and clearest segmentation overview.

4. DISCUSSION

We approached the segmentation of 3DRA images of bAVMs with deep learning methods after densely annotating
5 volumes of a private dataset. Our aim was to acquire sufficiently good binarisations that allow a posterior
topological and morphological analysis of bAVMs. The assessment was based on a quantitative comparison of
two overlap metrics: vessel Dice coefficient and centerline Dice coefficient. These were selected to account for
the overall relevant voxels and also preservation of voxel connectivity.

We performed a partial ablation study to understand the effect of incorporating the additional centerline-
focused loss during training. No training was carried on with only cross-entropy loss, given the class-imbalance
inherent to brain vessel images. Method comparison was narrowed down to threshold and region growing, which
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Figure 4. Enlarged view of the qualitative results presented in Figure 3. Top to bottom: vein of case 1, fistula and venous
drainage of case 2, vein structure in case 3, distal arteries to case 4, dense nidus and draining veins to case 5.

are standard in vessel segmentation tasks and their code implementations are readily available. This study
design decision was deemed appropriate to minimise reproducibility difficulties and potential ambiguity. There
are limitations to this approach, since our network works patch-wise while threshold and region growing were
used volume-wise. However, using these standard methods on a patch level would imply threshold level and seed
computation for each patch, which would then introduce additional complexity to the comparison.

Regarding the quantitative analysis, we considered vessel Dice and centerline Dice coefficients with their
respective Precision and Recall values. Our UNet models consistently achieve a higher Dice coefficient value and
Recall value with respect to the standard segmentation methods, indicating a better coverage of the foreground
voxels. Even though Precision values are higher with region growing, the resulting segmentation is insufficient
in the overall recovery of foreground voxels.

Methodologically, we observed that incorporating the additional centerline-focused loss during training does
not offer an evident improvement in the quantitative results with respect to the combined cross-entropy and
Dice losses approach (Table 2 and Table 1). Nevertheless, qualitative analysis hints towards clearer vessel
delineations and enhanced connectivity when employing soft centerline Dice loss calculation (as in case 4 in Figure
4). Furthermore, considering centerline Dice as a form of quantitative report provides additional reassurance
regarding preservation of vessel-like qualities.22



False positives yielded by our models correspond mostly to veins and distal arteries that were not delineated
in ground truth (see Figure 3). We consider this aspect presents two potential and interconnected advantages.
Firstly, acquiring ground truth labels for bAVMs angiographies has proven to be a challenge, due to the lack
of enough available images, high inter-rater variability9 and unpredictable topomorphology.1,2 Manually gen-
erating these labels is an intensely time-consuming task, and even carefully polished segmentations are prone
to present missing vessels. We found that models trained over densely annotated volumes were able to yield
adequate binarisations with high structure coverage. It would then be possible to leverage these segmentations
to ease the manual annotation task, by using the predicted geometries as first initial guesses of the structures
of interest. Additionally, appropriately dealing with the segmentation of venous structures is a difficult task
due to shape and intensity inconsistencies. High flow rates in bAVM cases can also trigger vascular remodeling,
which further compromises venous delineation by rendering statistical atlas unreliable. Nonetheless, it is becom-
ing highly relevant for clinical practice as interventional treatments start to consider and involve transvenous
embolisation more often.31–33 As preliminary approaches, skeleton-based vein extractions have been proposed34

given a sufficiently good vascular segmentation. Hence, developing a model able to handle these difficulties at
segmentation time could be a valuable tool for embolisation planning in clinical practice.

The presented work constitutes a further step towards achieving a robust segmentation method despite the
mentioned difficulties. This is only the first part of the still challenging task of comprehensive technology-assisted
bAVM study, but crucial to its achievement. Our results are encouraging regarding satisfactory coverage of all
structures of interest, and might eventually help alleviate the burdensome manual labelling task or even serve as a
starting point to reach more reliable segmentations. Ultimately, this would contribute to a better understanding
and achieving a more accurate morphological and topological characterisation of these malformations. In this
respect, further tests are currently underway to assess the impact on model robustness of the inclusion of diverse
data augmentation techniques and synthetic vessel datasets.
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