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Abstract: In clinical routine, ophthalmologists frequently analyze the shape and size of the
foveal avascular zone (FAZ) to detect and monitor retinal diseases. In order to extract those
parameters, the contours of the FAZ need to be segmented, which is normally achieved by
analyzing the retinal vasculature (RV) around the macula in fluorescein angiograms (FA).
Computer-aided segmentation methods based on deep learning (DL) can automate this task.
However, current approaches for segmenting the FAZ are often tailored to a specific dataset or
require manual initialization. Furthermore, they do not take the variability and challenges of
clinical FA into account, which are often of low quality and difficult to analyze. In this paper we
propose a DL-based framework to automatically segment the FAZ in challenging FA scans from
clinical routine. Our approach mimics the workflow of retinal experts by using additional RV
labels as a guidance during training. Hence, our model is able to produce RV segmentations
simultaneously. We minimize the annotation work by using a multi-modal approach that leverages
already available public datasets of color fundus pictures (CFPs) and their respective manual RV
labels. Our experimental evaluation on two datasets with FA from 1) clinical routine and 2) large
multicenter clinical trials shows that the addition of weak RV labels as a guidance during training
improves the FAZ segmentation significantly with respect to using only manual FAZ annotations.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Ophtalmologists routinely use multiple imaging modalities to analyze retinal biomarkers for
diagnosing and monitoring diseases and therapeutic planning. Among the most commonly used
en-face modalities are Color Fundus Photography (CFP) and Fluorescein Angiography (FA)
[1,2].

CFP is a non-invasive photography of the so-called fundus of the eye, referring to the retinal
surface. Normally, clinicians use CFPs for analyzing the Retinal Vasculature (RV) and the optic
disc, or to assess the presence of lesions. For example, macular degeneration with drusen and
signs of choroidal neovascularization in neovascular age-related macular degeneration (AMD)
or hemorrhages, cotton whool spots or hard exsudates in Diabetic Retinopathy (DR) can be
viewed with this modality. Vascular changes are also investigated in case of ischemic diseases
like Retinal Vein Occlusion (RVO), in particular distribution, connectivity and density changes
of the RV [3].

These last mentioned changes can be best visualized with FA, which is an invasive modality
that uses a fluorescent dye to increase the contrast of the vascular structure and visualize leakage
from leaky pathological vessels. After injecting the dye intravenously, a series of images are
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acquired while the dye distributes in the body’s systemic bloodstream including the eye, allowing
to see the retinal circulation in different phases and to discover pathological changes or vessel
occlusions. As opposed to CFP, this technique also enables to observe the so-called Foveal
Avascular Zone (FAZ), a vessel free area in the center of the macula that is responsible for sharp
vision. The shape, size and perimeter of this region are known to be relevant biomarkers related
to DR and RVO for diagnosis and disease monitoring, as the FAZ can be abnormally large in
presence of these diseases [4–6].

Segmenting the FAZ is a key step to quantify these biomarkers in clinical routine. This process
is naturally linked to the retinal vaculature, as the manual delineation of the vessel-free FAZ
typically involves identifying the edges of the vessels around the macula.

The task of manual FAZ segmentation, however, is tedious, time consuming and subject to
high intra- and inter-observer variability [7]. On the one hand, this can be explained by the
varying quality and heterogeneity of data (see Fig. 1). In clinical routine, the images are often
of poor quality in general, having low contrast or brightness, are blurry, contain noise or other
image artifacts. Also the field of view can vary between or even within patients. On the other
hand, the segmentation can be also difficult in FA scans with sufficient quality, as the FAZ can
vary significantly in shape and size due to natural anatomical variations or pathological changes.
For example, diseases such as DR can notably affect the identification of its contour [5].

Fig. 1. FA scans showing the heterogeneity of clinical data. From top left to bottom right:
A scan with (1) light motion blur and high contrast, (2) low contrast with almost no RV
visible and black borders, (3) sufficient quality with the FAZ clearly visible, (4) a small FAZ
and leaky RV, (5) non-centered fovea, (6) a scan with low contrast, (7) a huge FOV and (8)
oversaturated brightness and contrast.

Computer-aided systems based on image processing techniques and deep learning (DL)
became popular in recent years to automate segmentation tasks [8]. Due to their low cost and
time-effectiveness, these approaches allow to process large amounts of data in a very efficient way,
which can have significant impact on clinical practice and research. However, translating such
models to real world scenarios is usually challenging, especially in the case of clinical FA due to
the aforementioned heterogeneity of the data. Current approaches for FAZ segmentation in FA are
tailored towards well curated datasets not reflecting the variability usually observed in real-world
clinical data [9]. Furthermore, they usually rely on manual labels during application-time and
cannot perform both FAZ and RV segmentation simultaneously [10–14], therefore not explicitly
taking the relationship between these two anatomical regions into account. The latter is partially
due to the lack of FA databases with manually annotated vessels. On the contrary, several
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public CFP datasets with manual RV annotations are available, a setting that has favored the
development of RV segmentation methods for this imaging modality [15].

In this paper, we propose a DL-based model that accurately segments the FAZ in clinical
routine FA by leveraging the RV as a guidance and exploiting the aforementioned anatomical
relation between the FAZ and the RV during the learning process (Fig. 2). In addition, the final
model also provides vessel segmentations in FA images. Instead of requiring laborious manual
RV annotations on FA scans, the proposed method utilizes public datasets of CFPs which already
come with manual RV labels. We trained and evaluated our method using a diverse dataset of FA
images from large clinical multicenter trials, with RVO as the main pathology. Moreover, we
performed an additional evaluation on a challenging external FA dataset retrospectively collected
from clinical records, containing various pathologies such as diabetic macular edema (DME), DR,
AMD and RVO. Experimental results on both datasets show that the proposed model outperforms
the baseline approaches, with significant improvements observed in the challenging external FA
dataset.

Fig. 2. FA scans with their corresponding FAZ and RV segmentations obtained by the
proposed approach.

1.1. Related work

Although several methods have been introduced for FAZ segmentation in FA [9–14,16], the
number of publications focusing on RV segmentation in this modality is scarce. On the contrary,
this topic has been extensively researched primarily in CFP [15,17,18], in part due to the
abundance of publicly available datasets with manual RV annotations.

The first approaches for FAZ segmentation in FA were mostly based on image processing
techniques and statistical learning algorithms such as Bayesian methods [10,16] or Markov
Random Fields models [12]. Semi-automatic approaches like region-growing [14], active
contours [11] and level-sets [13] were also explored, as they mimic the process of delineating the
region boundaries. However, they heavily rely on manual initialization, and their results might
vary depending on the initial selection. On the other hand, all these early algorithms require
careful hyperparameter tuning, which are usually tailored to specific datasets. As a result, they
suffer from poor generalization to other sets if not re-calibrated, which takes time, computational
resources and sometimes even require extra manual annotations. DL methods can alleviate these
drawbacks by learning task-relevant features from data. However, they have not been used for
FAZ segmentation in FA but in other imaging modalities such as OCT-A [19]. To the best of
our knowledge, our previous multitask model [9] is the only DL approach published for FAZ
segmentation in FA.

RV are observed in FA as a large, connected hyperfluorescent structure with high contrast
to the surrounding retinal tissue. This property allows to identify the FAZ as a dark area
centered in and around the fovea (Fig. 2). Based on this concept, Simó et. al [16] introduced a
Bayesian model that simultaneously segments arteries, veins and the FAZ in FA, as three separate
classes. However, they experimentally observed that integrating the vessels in the prediction
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task compromised the FAZ segmentation performance compared to results from other existing
approaches. A similar behavior was observed in [19] but in OCT-A.

Despite the fact that FA allows to easily assess the integrity and distribution of the RV because
of its high contrast, CFP is more frequently used for this purpose. This is mainly due to the
invasive characteristics of FA, which may lead like any intravenously applied medication to very
rare allergic reactions and is thus not done on a regular basis repeatedly [1]. On the contrary, CFP
shows the RV with less contrast, but it is non-invasive and easier to obtain. As a result, most of
the public datasets with manual RV annotations and the majority of the RV segmentation models
are based on it. Several approaches have been proposed to segment the RV in CFP, with the most
recent DL-based methods showing outstanding performance [15]. In [17,18], for instance, a
U-Net model [20] trained with an adversarial loss is able to produce cutting-edge results superior
to the state-of-the-art. On the other hand, the literature in RV segmentation for FA is quite limited
and mostly focused on simple image processing techniques, which allow to extract pixel-based
features that are subsequently used for vessel/not vessel classification [21–26]. As previously
stated, these techniques suffer from poor generalization ability and require an intensive labor to
work on other datasets.

The vast majority of RV segmentation models are usually trained and evaluated using publicly
available CFP datasets with manual RV labels, which are extensive and easy to access [27–32].
Leveraging labels produced in one image modality to segment targets in another one allows to
not only benefit from existing datasets without requiring to manually create new annotations, but
also to exploit the advantages of each modality in particular (e.g., the FAZ can only be segmented
manually in FA or OCT-A). In general, this requires either an accurate multimodal registration
algorithm or the usage of domain adaptation techniques. Registration based approaches [33–37]
are in general applied when pairs of images from both modalities are available for each patient.
Some of these approaches use paired, registered images so that labels from one modality can be
used for the other. This has the disadvantage that often only limited data is available. Ding et. al.
propose several methods that use registration between CFP and FA [33,34] and weak labels [35].
Hervella et. al. [36] also propose a registration-based transfer-learning approach between FA
and CFP for RV segmentation in CFP. A similar approach is proposed by Noh et. al. [37], where
they use weak labels from FA for training a segmentation in CFP. In contrast, domain adaptation
methods translate images from one source to another, and can be applied even in unpaired sets
for example by using CycleGANs. These transformed images can then be applied jointly with
the source annotations to train a new model to automatically produce similar annotations but
in the destination modality. Building on this idea, research has been conducted on how to use
public RV annotations from CFP as weak labels for segmentation in FA or other modalities and
vice versa, or to build models that can generally segment RV in both modalities [33–41]. Ju
et. al. [38] propose a domain adaptation strategy using a CycleGAN model to bridge the gap
between unpaired UWF CFP and regular CFP. Rodrigues et. al. [39] describe a multi-modal
RV segmentation approach that works in CFP, FA and Scanning Laser Ophthalmology (SLO).
Similarly, Zhao et. al. [40] use a combination of image-processing methods and active contour
segmentation to segment RV in CFP and FA. Brea et. al. [41] train a model on CFP and then
apply and evaluate the result on SLO pictures and vice versa.

Research has also been conducted about modality conversion between CFP and FA. Several
approaches [42–44] use a CycleGAN-based approach to synthesize FA from CFP. In contrast,
Li et. al. [45] first structure the domain features into domain-shared and domain-independent
features. Other methods [46,47] rely on paired images for the conversion. Hervella et. al
[48] experimentally compare both approaches: generally, image translation learned from paired
data seems to work better because it is easier to learn the mapping from one pixel to the other.
However, paired images are not always available and therefore this approach is often not feasible.
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Automatically segmenting retinal structures in clinical routine FA remains challenging due
to datasets having variations in image resolution, pixel size, contrast, field of view and image
artifacts that need to be covered by the segmentation model. Furthermore, pathologies can
alter the size and shape of the retinal structures significantly, resulting in an even more difficult
segmentation task.

1.2. Contributions

In this paper, we propose a DL-based model that accurately segments the FAZ in challenging FA
data by using the RV as guidance. Hence, our model simultaneously produces segmentations
of the vessels. To the best of our knowledge, this is the first approach to cope with this task by
exploiting CFP based manual annotations. The main contributions of this work are fourfold:

• Performance improvement for FAZ segmentation in FA by using RV as additional guidance,
mimicking the workflow of domain experts.

• Eliminating the need of obtaining manual RV annotations in FA, by exploiting public
datasets from another modality (CFP) which already come with manual annotations.

• Simultaneous segmentation of FAZ and RV.

• Additional evaluation on a challenging external clinical routine FA dataset, containing the
most common retinal diseases (AMD, DR, RVO, DME), various pathologies and diverse
image quality.

2. Methods

An overview of the proposed framework is provided in Fig. 3. First, a CycleGAN-based model
FCFP↔FA is trained on unpaired CFP and FA images to learn a conversion between these two
modalities, omitting the need of paired training samples. The FCFP↔FA generator is then applied
to convert public CFP into pseudo-FA (see Fig. 3, point 1). Second, an intermediate U-Net-based
model FRV-SEG is trained on the pseudo-FA images to segment RV, using the manual annotations
provided by the CFP datasets. Then, weak RV labels are obtained by applying this trained model
on the real FA data (see Fig. 3 point 2). Third, the manual FAZ labels are combined with the
weak RV labels as multi-class labels. Finally, a U-Net GFAZ&RV-SEG is trained on the clinical FA
data with the manual FAZ and weak RV labels as targets (see Fig. 3, point 3).

2.1. Domain adaptation for transforming CFP into pseudo-FA

We utilize a CycleGAN approach [49] to convert the CFPs XCFP from dataset SPUBLIC-CFP into
pseudo-FA. The CycleGAN consists of two GANs, each of them featuring a generator G and
a discriminator D. Here, the first GAN GANCFP→FA converts CFP into pseudo-FA, while the
second GAN GANFA→CFP converts pseudo-FA back into CFP.

Let SCFP↔FA = {XCFP, XFA} be the training data, with XCFP ∈ Ra×b being CFP images with
a resolution of a × b pixels and XFA ∈ Ra×b being FA images. After training, the generator
GCFP→FA of GANCFP→FA has learned the mapping GCFP→FA : XCFP → XFA.

The two generators are U-Nets with four encoding/decoding levels. Each encoding level
consists of a convolution block with a 3× 3 convolution with a stride of 2, followed by a Rectified
Linear Unit (ReLU) activation function and instance normalization. The decoding part is similar
to the convolution blocks in the encoding level, with each deconvolution block additionally
having a skip connection and an upsampling layer with a stride of 2 after the convolution block.
Both discriminators consist of four convolution-blocks with the same structures as above. The
model is trained with the mean squared error loss function.

The final generator model GCFP→FA is applied on dataset SPUBLIC-CFP to convert the public
CFP images to pseudo-FA: GCFP→FA(XCFP).
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Fig. 3. Overview of the framework. 1.a) The CycleCAN learns the matching between CFP
and FA 1.b) The CFP images are converted into pseudo-FA. 2.a) FRV-SEG is trained on the
pseudo-FA and respective RV labels. 2.b.) GRV-SEG is applied on dataset SPUBLIC-CFP to
obtain the weak labels. 3.a) The manual FAZ and weakly-supervised RV labels are combined
into two-class labels. 3.b) GFAZ&RV-SEG is trained on dataset SREAL-FA with the two class
labels.
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2.2. Creating weak RV labels for FA images

We train an intermediate model FRV-SEG to segment RV on GCFP→FA(XCFP). The model is based
on the work of Son et. al. [17], which is a U-Net trained with an adversarial loss. Hence,
our model GRV-SEG utilizes a discriminator trying to distinguish between real and generated
segmentations.

Let SRV-SEG = {GCFP→FA(XCFP), YMANUAL-RV} be the training data, with YMANUAL-RV ∈ Ya×b

being the manual RV labels, originally annotated on XCFP, with Y = {0, 1} being the possible
classes for background and RV. The segmentation model has then trained to learn the mapping:
GRV-SEG : GCFP→FA(XCFP) → YMANUAL-RV.

Our U-Net based model GRV-SEG has five encoding/decoding levels, each level consisting of a
convolution block with two 3 × 3 convolutions, each followed by a ReLU function and a batch
normalization layer, concluding with a 2×2 max-pooling layer. The decoder is connected to the
encoder via skip connections, using convolutional blocks of similar structure with additional
upsampling layers. The discriminator used for the adversarial loss consists of five convolution
blocks with the same layers as in the encoder of the segmentation network. The U-Net is trained
with the cross entropy loss function. While the model is initially trained on pseudo-FA images, it
is applied on the real FA scans from the target dataset SREAL-FA to obtain RV annotations that can
be used as weak RV labels: GRV-SEG(XREAL-FA) = YWEAK-RV.

2.3. Simultaneous FAZ and RV segmentation using weak RV labels

We train GFAZ&RV-SEG on clinical FA with the weak RV and manual FAZ labels as targets. Let
SREAL-FA = {XREAL-FA, Y[WEAK-RV, MANUAL- FAZ]} be the training dataset for this model, with
XREAL-FA ∈ Ra×b being FA images from large multicenter clinical trials. The target labels
Y[WEAK-RV, MANUAL- FAZ] ∈ Ya×b are obtained by combining the weak RV labels YWEAK-RV with
the manual FAZ labels YMANUAL-FAZ, with Z = {0, 1, 2} being the classes for background,
RV and FAZ. To remove the borders that some FA images in the dataset have, the FA images
XREAL-FA are cropped before training by calculating the bounding box of the weak RV labels
YWEAK-RV. The bounding box crops the image according to the lower, upper, left and right bounds
of the labels, resulting in an image without any black borders. GFAZ&RV-SEG is a multi-class
segmentation network based on a U-Net with six encoding/decoding levels. Each encoding level
has a convolution block with two 3×3-convolutions, each followed by an instance normalization
layer, ReLU function, a dropout layer and a 2 × 2 max-pooling layer. The decoder consists
of deconvolution blocks, with the addition of upsampling filters with a size of 2×2 and skip
connections between encoder and decoder. The model is trained with the cross entropy loss
function.

3. Experimental setup

We evaluated our method in the following terms: (1) quantitative and qualitative segmentation
accuracy for FAZ segmentation in datasets SREAL-FA and SEVAL for our proposed model and
the baseline, (2) qualitative RV segmentation results along with AUC and Dice metrics for a
subset of manually annotated images of SREAL-FA and (3) the Frechet Inception Distance (FID)
and qualitative evaluation for the conversion from CFP to FA in dataset SPUBLIC-CFP. Besides
using the U-Net (Section 2.3 for GFAZ&RV-SEG), we performed an ablation experiment utilizing a
corresponding U-Net++ [50,51] as architectural backbone. Moreover, we also compared the
proposed approach using the weak RV labels as additional guidance to the baseline-strategy
training solely on the binary FAZ annotations. For evaluation purposes, a grader additionally
separated the SREAL-FA testset into regular and irregular FAZ shapes. The images have been split
into 80% training and 20% validation data for datasets SPUBLIC-CFP and SCFP↔FA. For SREAL-FA



Research Article Vol. 13, No. 5 / 1 May 2022 / Biomedical Optics Express 2573

the data has been split into 60% training, 20% validation and 20% test data. SEVAL is an external
testset that is not associated with the training data and other datasets at all.

3.1. Materials

Table 1 summarizes the datasets used in our experiments. The (1) support dataset SCFP↔FA
consists of 355 CFPs and FA images that are used for training the modality conversion, (2)
support dataset SPUBLIC-CFP consists of 123 CFPs and their respective manual RV annotations
from public datasets and (3) target dataset SREAL-FA consists of FA images from large multicenter
clinical trials and their respective manual FAZ labels. For additional evaluation, we use (4)
another dataset SEVAL with 185 FA images from clinical routine.

Table 1. Overview of the datasets used for training and evaluating our proposed framework.

Dataset Modality Images Annotations Description Pathology

SREAL-FA FA 494 FAZ Large randomized
multicenter clinical

trials

RVO

SCFP↔FA CFP & FA 355 - Modality conversion DR, AMD, GL,
hypertension, RVO

SPUBLIC-CFP CFP 123 RV Public datasets DR, AMD, GL, HT

SEVAL FA 185 FAZ FA from clinical
routine for evaluation

Miscellaneous

3.1.1. FA from large multicenter clinical trials (SREAL-FA)

The target dataset SREAL-FA consists of 494 FA images and its respective manual FAZ segmen-
tations. The images are taken from the Vienna Reading Center imaging database from RVO
randomized clinical trials, which examined patients suffering from RVO. Images were acquired
with devices from seven different vendors, with a resolution ranging from 4288 × 2848 to 512 ×

512 pixels. The images vary significantly in terms of field of view, pixel size, contrast, RV and
FAZ visibility, viewing angle, imaging artifacts and motion blur. The FAZ labels were manually
annotated by an experienced grader (trained and certified by the Vienna Reading Center) and
used as ground-truth. Furthermore, RV annotations in 18 images in the testset were produced by
a grader.

3.1.2. Public CFP datasets (SPUBLIC-CFP)

The dataset SPUBLIC-CFP consists of public datasets of CFP images and their respective RV
annotations [27–32]. CHASE_DB1 [27] consists of 28 CFPs with a resolution of 1280 × 960
pixels. As with all other datasets described in this section, each image has manual RV labels.
DR HAGIS [28] was originally extracted from a DR screening program and consists of 39
high-resolution CFP images. The image resolution ranges from 2816 × 1880 to 4752 × 3168
pixels. The dataset has images that show signs from four different diseases: glaucoma (GL),
hypertension, DR and AMD. DRIVE images [29] were also collected from a DR screening
program and consists of 40 CFP images with a pixel size of 768 × 584. 33 of the images show
healthy eyes and 7 images show signs of mild early DR. HRF [30] consists of 45 CFP images,
of which 15 show healthy eyes, 15 show DR and 15 show GL. The images have a resolution of
3504 × 2336 pixels. LES-AV [31] consists of 22 images with resolutions of 1444 × 1620 and
1958 × 2196 pixels from GL and healthy subjects. STARE [32] consists of 20 CFP images with
manual RV annotations, of which 10 show healthy eyes and 10 show eyes with pathologies that
obscure the RVs, with a resolution of 605 × 700 pixels.
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3.1.3. CFP and FA for modality conversion (SCFP↔FA)

This dataset consists of 123 CFP images from SPUBLIC-CFP and 204 FA images without borders
from the training-set of SREAL-FA.

3.1.4. External FA testset from clinical routine for additional evaluation (SEVAL)

The FA images of dataset SEVAL come from clinical routine. Similar to the images from the
target dataset, the image properties differ widely. The image dimensions range from 768 × 768 to
1536 × 1536 pixels and a grader annotated the FAZ on all images. As the data comes directly
from patients that visit the clinic, the images cover a large range of retinal pathologies but can
also show healthy retinas.

3.2. Pre-processing

To accelerate the training process, the CFPs of SCFP↔FA were converted to grayscale and cropped
to the same field of view as the FA images. Then, both CFP and FA were resized to an image
size of 256 × 256 pixels due to memory limitations. The same steps were applied during test
time to convert the CFPs of SPUBLIC-CFP to pseudo-FA. The images of SREAL-FA were cropped to
the bounding box of the weak RV labels and resized to a resolution of 800 × 800 pixels.

3.3. Evaluation metrics

The performance for the FAZ and RV segmentations was quantitatively evaluated using standard
metrics such as the Dice index, the Area Under the precision-recall-Curve (AUC), precision and
recall. A Wilcoxon signed-rank test with a significance level of α = 0.05 was used to study the
statistical significance of the differences in performance between our proposed model and the
baseline. The AUC was computed from score maps. Dice, precision and recall were calculated
from binary maps using a threshold of 0.5 for baseline, while for our model each pixel gets
assigned the class that has the highest probability.

3.4. Training details

We trained FCFP↔FA for 800 epochs using Glorot uniform initialization, Adam optimization,
and learning rates of 2 × 10−3 and 2 × 10−4 for the discriminator and GAN, respectively, with a
batch-size of 1. FRV-SEG was trained for 100 epochs, using Glorot uniform initialization, Adam
optimization and a learning rate of 2 × 10−2, with a batch-size of 1. The images where randomly
flipped vertically and rotated by up to 25 degrees during training. The model with the highest
Dice on the validation set was selected as the final model. GFAZ&RV-SEG was trained for 600
epochs with He normal initialization and Adam optimization, and a learning rate of 10−4. During
training, data augmentation in the form of random shifting up to the maximum of 6% of the
image size, rotation up to 25 degrees, zooming up to 40% of the image size, shearing up to
20%, as well as random horizontal flipping was used. Due to hardware limitations we trained
the network with a batch size of 1. The model with the highest Dice on the validation set was
selected for final evaluation. Both baselines were trained with the exact same settings as their
respective multiclass models.

4. Results

4.1. FAZ segmentation in FA from clinical routine (SEVAL)

Quantitative results for the U-Net and U-Net++ based models for SEVAL are depicted in Table 2.
Both models show an improvement in AUC and Dice values when using RV as guidance, with
statistically significant improvements for both the U-Net and U-Net++ based models (p=0.035
for AUC and Dice for the UNet based model, p=0.003 for AUC and p≈0 for Dice for the UNet++
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based model). The proposed multi-class model using the U-Net architecture as backbone shows
the best overall performance with improvements of 1.1% and 1.7% in terms of AUC and Dice
compared to its single-class baseline, respectively. Figure 4 illustrates the distribution of Dice
values for our proposed and the baseline approach in this best model.

Fig. 4. Boxplots showing the Dice values for FAZ segmentation in testsets SREAL-FA and
SEVAL from the standard U-Net model.

Table 2. Results for FAZ segmentation in the additional external testset SEVAL,
showing the Area Under the precision-recall-Curve (AUC), precision (PR), recall (RE)

and Dice.

Model RV guidance AUC PR RE Dice

U-Net++ × 0.807 ± 0.228 0.430 ± 0.216 0.9375 ± 0.174 0.530 ± 0.210

U-Net++ ✓ 0.822 ± 0.231 0.654 ± 0.232 0.801 ± 0.280 0.656 ± 0.227

U-Net × 0.881 ± 0.182 0.615 ± 0.228 0.942 ± 0.151 0.776 ± 0.181

U-Net ✓ 0.892 ± 0.178 0.733 ± 0.221 0.893 ± 0.158 0.793 ± 0.170

4.2. FAZ segmentation in FA from multicenter clinical trials (SREAL-FA)

Table 3 shows AUC, precision, recall and Dice values for our proposed method and the baseline
approaches on the testset of SREAL-FA. In line with the results on the external test set, the additional
weak RV supervision improves the FAZ segmentation performance for both architectures. The
best-performing multi-class U-Net architecture outperforms the baseline by 1.4% and 1.0% in
terms of AUC and Dice, respectively. Moreover, the Dice values of this model on the SREAL-FA
testset are illustrated in the left boxplot of Fig. 4.

Table 3. Results for FAZ segmentation in target dataset SREAL-FA.

Model RV guidance AUC PR RE Dice

U-Net++ × 0.855 ± 0.170 0.696 ± 0.231 0.848 ± 0.181 0.716 ± 0.168

U-Net++ ✓ 0.884 ± 0.173 0.774 ± 0.201 0.848 ± 0.174 0.778 ± 0.167

U-Net × 0.907 ± 0.131 0.885 ± 0.163 0.840 ± 0.177 0.817 ± 0.145

U-Net ✓ 0.921 ± 0.112 0.891 ± 0.141 0.809 ± 0.165 0.827 ± 0.113

For irregular FAZ shapes, we observed mean Dice values of 0.814 for the proposed U-Net
based model and 0.812 for the corresponding baseline. For regular FAZ shapes the mean Dice
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values are 0.852 for the proposed method and 0.825 for the baseline, respectively. These results
indicate the improved generalizability of the proposed model to varying types of FAZ shapes.

Figure 5 depicts qualitative results of the U-Net based model on two exemplary samples,
illustrating the original FA image, manual FAZ segmentation, single-target baseline FAZ
segmentation as well as FAZ and RV predictions from our proposed approach. The first row
in Fig. 5 shows a case with a pathologically large FAZ. Here, the additional RV segmentations
help to improve the accuracy by forcing the network to provide a more coherent result, following
the anatomical characteristics better. The second row shows a FAZ with a normal, round shape.
In this case there is a slight improvement in accuracy compared to the baseline, where the RV
supervision helps to remove a small outlier on the top of the FAZ segmentation.

Fig. 5. Qualitative examples of the results of our segmentation model in the testset from
clinical trials. From left to right: FA input image, manually annotated FAZ and automated
vessel segmentations used for training the model, FAZ segmentation produced by the baseline,
FAZ and RV segmentation results produced by the proposed model.

4.3. Converting CFP to pseudo-FA

For the conversion from CFP to pseudo-FA we observed an FID of 101.198. Figure 6 shows
qualitative examples of how the CFP images are transformed into pseudo-FA images by our
CycleGAN-model GCFP→FA. It is worth noting that the vessels are turned white and at the same
time the tissue in the area of the macula stays black. This indicates that the CycleGAN learned a
semantically meaningful transformation, as simple inversion of the input image would result in a
bright fovea.

4.4. RV segmentation in clinical FA

The AUC and Dice for RV segmentation are 0.74 and 0.67, respectively. As shown in Fig. 7, the
model predicts main RV structures in an accurate manner. However, we empirically observed
that the segmentation performance of small bifurcations or vessels decreases in low-contrast
images and images with motion artifacts.
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Fig. 6. Qualitative results obtained for converting CFP to pseudo-FA using our CycleGAN
model. Left: input CFP. Right: pseudo-FA image converted from the CFP.

Fig. 7. Qualitative results of RV segmentation on real FA images. From left to right: input
image, manual annotations, prediction of our weakly trained model comparison.

5. Discussion

In this paper, we proposed a framework that can accurately segment the FAZ in challenging FA
images taken from large multicenter clinical trials and clinical routine. When done manually, the
grader normally follows the edges of the RV around the macula to annotate the FAZ. Mimicking
the annotation workflow of human experts, we propose that incorporating RV labels as extra
supervision during training to guide the algorithm to improve detection of the FAZ contour.
Hence, our model can simultaneously segment the RV in addition to the FAZ. The need for
labourious manual annotation of RV ground-truth is mitigated by a multi-modal approach that
leverages already existing labels from public CFP datasets. To the best of our knowledge, this is
the first framework to use weak RV labels from another modality to improve FAZ segmentation
in FA.

The majority of datasets that have been utilized in previous works consist of images with
good quality only and are trained and tested in the same data distribution. In contrast, our
model is trained on clinical data with a high variability (see Fig. 1), and we provide an extensive
evaluation including a separate external testset from clinical routine with challenging images. Our
results show that extra RV supervision aids the FAZ segmentation task, resulting in a significant
improvement of the accuracy in terms of AUC and Dice (see Fig. 4 and Table 2).

Typical examples of wrong results in challenging clinical data are FAZ predictions that have
an incorrect shape, additional disconnected segmentations or false positive regions lying outside
of the fovea in the periphery (e.g. where the image has similar intensity values as the FAZ area).
Addressing these outliers and wrong contours is a key aspect in FAZ detection. We empirically
observed that our proposed model improves generalizability to varying types of shapes and
reduces the number of outliers in the periphery. We hypothesize that this is due to the RV map,
providing spatial context and aiding to find the location of the fovea.

Interestingly, Li et. al. [19] come to a different conclusion, stating that extra RV supervision
using a multi-task model does not improve the FAZ segmentation accuracy in OCT-A projection
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maps. We assume that this might be due to OCT-A data showing the RV with high contrast and
in a quality where additional supervision becomes unnecessary for segmenting the FAZ.

Additionally to the FAZ detection, we prove that it is possible to get accurate RV segmentations
in FA images without the need of manual annotations by leveraging public CFP datasets. However,
we empirically observed that small bifurcations and vessels are sometimes missed by our model,
which may be due to the low resolution of the pseudo-FA images, as the task gets harder with
decreasing image-quality. Nonetheless, the extra RV supervision improves the FAZ segmentation
significantly, raising the question regarding the importance of small vessels even in the manual
annotation process by clinicians.

Other methods in literature that use modality conversion to obtain weak labels use simple
image processing techniques like inversion of the grayscale CFP to imitate FA. However, our
CycleGAN-based model yields a more realistic result with the fovea remaining black, while the
RV turns white (see Fig. 6). With respect to the realism of this modality conversion, we obtained
an FID value of 101.198, which is higher than those reported in related literature by paired
image-to-image translation models (e.g. 43 by Tavakkoli et al. [47]). On the one hand, this can
be explained by our use of unpaired CFP and FA data for training the CycleGAN in contrast to
the paired training setting in [47], and on the other hand by our challenging dataset consisting of
heterogeneous and often low-quality images. In general, however, there is no standard method to
quantitatively evaluate the performance of a given GAN that is generally agreed upon in literature.
Therefore we also provide qualitative samples, allowing manual inspection. Furthermore, the fact
that the overall segmentation accuracy of the framework is improved indicates that the quality of
modality conversion is sufficient.

A potential improvement of our approach might be the retinal vasculature segmentation
accuracy in difficult cases. While our approach already improves the performance of the FAZ
segmentation significantly, it would be interesting to see if refining those weak RV labels would
result in an even better delineation of the FAZ. For example, the model could be fine-tuned
on the few public FA images that are available or by manually annotating RV on clinical
FA. Related to this, future work could also focus on investigating and improving the CFP-FA
translation model. This might improve the RV segmentation result and consequently also the
multi-class segmentation performance of the overall framework. Another research question worth
investigating would be to apply this framework the other way around from FA to CFP, in order to
see if the FAZ could be segmented in CFP. Currently, this task is even impossible to do for retina
specialists. It would also be interesting to see if other modalities or labels could be included in
this framework, and especially if the model could be transferred to OCT-A.

Finally, there is an increased interest in improving data pre-processing and engineering to
get good results, as opposed to implementing complicated architectural designs. Here, we
showed that providing RV as additional guidance (where all of the steps in our framework are
based on straightforward DL-based models) can improve the segmentation result significantly,
regardless of the backbone used in our experiments. Nevertheless, empirical evaluations using
other architectures are still necessary to ensure that this holds general for any chosen network.

6. Conclusion

We proposed a segmentation model that simultaneously segments the FAZ and RV in heteroge-
neous FA images from clinical routine with various pathologies. We evaluated our algorithm
in two datasets, coming from clinical trials and clinical routine, respectively. We showed that
our model significantly improves the FAZ segmentation performance by using weak RV labels
as extra supervision. Future work might include additional improvement of the RV labels by
refining the modality conversion, segmenting the FAZ in CFP, or including further modalities
such as OCT-A, or other pathologies.
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