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José Ignacio Orlandot, Xiulan Zhanga, Yanwu Xub

aState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen
University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science,

Guangzhou, China
bIntelligent Healthcare Unit, Baidu Inc., Beijing, China

cInstitute of High Performance Computing (IHPC), Agency for Science, Technology and
Research (A*STAR), Singapore

dSchool of Informatics, Xiamen University, Xiamen, China
eShanghai Jiao Tong University, Shanghai, China

fXi’an Jiaotong-Liverpool University, Suzhou, China
gInstitute of High Performance Computing,A*STAR, Singapore

hInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking
Union Medical College, Tianjin, China

i School of Medical Technology, Beijing Institute of Technology, Beijing, China
jDepartment of Computing, Hong Kong Polytechnic University, Hong Kong, China

kDepartment of Computer Science and Engineering, Southern University of Science and
Technology, Shenzhen, China

lWeizhi Medical Technology Company, Suzhou, China
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Glaucoma is a chronic neuro-degenerative condition that is one of the world’s
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leading causes of irreversible but preventable blindness. The blindness is gen-

erally caused by the lack of timely detection and treatment. Early screening is

thus essential for early treatment to preserve vision and maintain life quality.

Color fundus photography and Optical Coherence Tomography (OCT) are the

two most cost-effective tools for glaucoma screening. Both imaging modalities

have prominent biomarkers to indicate glaucoma suspects, such as the vertical

cup-to-disc ratio (vCDR) on fundus images and retinal nerve fiber layer (RNFL)

thickness on OCT volume. In clinical practice, it is often recommended to take

both of the screenings for a more accurate and reliable diagnosis. However,

although numerous algorithms are proposed based on fundus images or OCT

volumes for the automated glaucoma detection, there are few methods that

leverage both of the modalities to achieve the target. To fulfill the research gap,

we set up the Glaucoma grAding from Multi-Modality imAges (GAMMA) Chal-

lenge to encourage the development of fundus & OCT-based glaucoma grading.

The primary task of the challenge is to grade glaucoma from both the 2D fundus

images and 3D OCT scanning volumes. As part of GAMMA, we have publicly

released a glaucoma annotated dataset with both 2D fundus color photography

and 3D OCT volumes, which is the first multi-modality dataset for machine

learning based glaucoma grading. In addition, an evaluation framework is also

established to evaluate the performance of the submitted methods. During the

challenge, 1272 results were submitted, and finally, ten best performing teams

were selected for the final stage. We analyze their results and summarize their

methods in the paper. Since all the teams submitted their source code in the

challenge, we conducted a detailed ablation study to verify the effectiveness of

the particular modules proposed. Finally, we identify the proposed techniques

and strategies that could be of practical value for the clinical diagnosis of glau-

coma. As the first in-depth study of fundus & OCT multi-modality glaucoma

grading, we believe the GAMMA Challenge will serve as an essential guideline

and benchmark for future research.
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1. Introduction
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Figure 1: An illustration of the GAMMA Challenge. The primary goal of the challenge is to

predict the cases as normal, early-glaucoma or progressive-glaucoma from fundus-OCT pairs.

Worldwide, glaucoma is the second-leading cause of blindness after cataracts

(Resnikoff et al. (2004)). About 70 million people have glaucoma globally (Vos

et al. (2016)). Glaucoma can occur without any cause, but is affected by many

factors. The most important of which is the intra-ocular eye pressure (IOP).

Aqueous humor in the eyes flows through the pupil to the front of the eye.

In a healthy eye, the fluid leaves through a drainage canal located between

the iris and cornea. With glaucoma, the drainage canals become clogged with

microscopic deposits. The fluid builds up in the eye. This excess fluid puts

pressure on the eye. Eventually, this elevated eye pressure can damage the

optic nerve head (ONH) leading to glaucoma.

Many forms of glaucoma have no warning signs. The effect is so gradual that

one may not notice a change in vision until the condition is at an advanced stage.

That is why glaucoma is also called the ’silent thief of sight’. Because vision loss

due to glaucoma can not be recovered, it is important for the early diagnosis.

If glaucoma is recognized early, vision loss can be slowed or prevented.

The function-based visual field test is the clinical gold standard of glaucoma
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screening, but it does not show signs of early glaucoma. Instead, an optic

nerve head (ONH) assessment is a convenient way to detect early glaucoma

and is currently performed widely for glaucoma screening (Jonas et al. (1999);

Morgan et al. (2005); Fu et al. (2017)). As practical and noninvasive tools,

2D fundus photography and 3D optical coherence tomography (OCT) are the

most commonly used imaging modalities to evaluate the optic nerve structure

in clinical practice.

The main advantage of the fundus photographs is that they can clearly

show the optic disc, optic cup, and blood vessels. Among them, the clinical

parameters like the vertical cup to disc ratio (vCDR), disc diameter, and the

ratio of blood vessels area in inferior-superior side to area of blood vessel in

the nasal-temporal side have been validated to be of great significance for the

glaucoma diagnosis (Jonas et al. (2000); Hancox OD (1999); Nayak et al. (2009);

Li et al. (2022)). OCT measures retinal nerve fiber layer (RNFL) thickness based

on its optical properties. RNFL thickness, computed from OCT volumes that

are acquired in cylindrical sections surrounding the optic disc, is often used to

identify glaucoma suspect. Though OCT volumes and fundus photographs are

effective tools for diagnosing early glaucoma, neither of them alone can be used

to exclude it. Clinically, ophthalmologists often recommend to take both of

the screenings for a more accurate and reliable diagnosis. Recent report shows

nearly 46.3% glaucoma cases would be ignored if using fundus images or OCT

volume alone (Anton et al. (2021)).

However, in terms of computer-aided glaucoma diagnosis, most algorithms

are developed on only single modality. Although fundus photographs and OCT

are both the mainstream glaucoma screening tools in clinical practice, few al-

gorithms are established that make use of both modalities. This is primarily

due to two reasons: a) there is no publicly available dataset to train and eval-

uate such models, and b) due to the discrepancy in the characteristics and the

dimensionality between the two modalities, the task is technically challenging.

In order to overcome these issues, a challenge with an dataset , as a way to

encourage the development of SOTA imaging technology on this clinically rele-
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vant task, may be an appropriate approach. Inspired by the success of Retinal

Fundus Glaucoma Challenge (REFUGE) (Orlando et al. (2020)) we previously

held, the Glaucoma grAding from Multi-Modality imAges (GAMMA) Challenge

was organized in conjunction with the 8th Ophthalmic Medical Image Analysis

(OMIA) workshop, during MICCAI 2021 (Strasbourg, France) to encourage the

development of fundus & OCT-based multi-modal glaucoma grading algorithms.

Given a pair consisting of a fundus image and an OCT volume, the submitted

algorithms need to predict the case as normal, early-glaucoma, or progressive-

glaucoma (intermediate and advanced stage). An illustration is shown in Figure

1. We also describe an evaluation framework to rank the participated teams.

Ten top performing teams were invited to share their technical reports and

source code. In brief, the primary contribution of the GAMMA Challenge is

two-fold:

a) The first publicly available multi-modality glaucoma grading dataset for

deep learning based methods is released, providing fundus photography and

OCT volume pairs.

b) State-of-the-art (SOTA) machine learning methods are evaluated to en-

courage the development of novel methodologies for fundus & OCT-based glau-

coma grading.

Due to the success of the challenge, GAMMA is expected to serve as the main

benchmark for this clinically relevant task in the future.

Besides glaucoma grading labels, the optic disc & cup (OD/OC) mask labels

as well as fovea location labels are also provided in the GAMMA dataset. These

auxiliary tasks were proposed to investigate the role of optic disc and fovea in

glaucoma grading. Thus, the participants can also submit algorithms for the

OD/OC segmentation task and fovea localization task, and the final team per-

formance includes the achieved scores on these auxiliary tasks. An illustration of

the auxiliary tasks is shown in Figure 2. In the GAMMA Challenge, the partic-

ipants are encouraged to utilize the auxiliary tasks to improve the performance

of glaucoma grading.

The inception of the GAMMA challenge encourages many participants to
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contribute SOTA machine learning techniques on this task. This manuscript

summarizes the GAMMA Challenge, analyzes their results, and investigates

their particular approaches. All top-10 teams submitted the source code of

their algorithms. This allowed us to conduct a detailed ablation study to identify

which techniques were the most effective ones for the screening task. We believe

that our analysis of SOTA machine learning methods will greatly benefit the

future algorithm design on this task.

2. The GAMMA challenge

The GAMMA challenge was officially launched from 20 Mar 2021 to 01 Octo-

ber 2021, which focuses on the field of glaucoma grading based on multi-modality

images (Fundus photography and OCT volume). The challenge consisted of a

preliminary stage and a final stage. During the preliminary stage, we released

a training set for the participating teams to train the models. The registered

teams were allowed to use the training set to learn their proposed algorithms

for glaucoma grading, and, optionally, for OD/OC segmentation and fovea lo-

calization. Their results can be submitted on https://aistudio.baidu.com/

aistudio/competition/detail/90/0/submit-result and would be evaluated

on the preliminary set. The registered teams then can see their performance

on the preliminary set and adjust their algorithms. For a fair comparison of

the proposed methods, the registered teams were not allowed to use any other

private data set for developing their methods.

This preliminary stage lasted 30 days, and each team was allowed to make a

maximum of five submissions per day. A total of 70 teams submitted 1272 valid

results to the challenge platform during the preliminary stage, out of which ten

teams, based on their method performance and the willingness to participate in

the OMIA8 workshop, were selected to the final stage. The ten such selected

teams were then ranked based on their performance on the final test set. For

the final stage, teams were not allowed to modify their models anymore.
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2.1. GAMMA Dataset

The dataset released by GAMMA was provided by Sun Yat-sen Ophthalmic

Center, Sun Yat-sen University, Guangzhou, China, and the glaucoma and non-

glaucoma subjects were randomly selected from glaucoma and myopia cohort,

respectively. The dataset contained 300 samples of fundus-OCT pairs. The

image acquisitions were performed in a standardized darkroom, and the pa-

tients were requested to sit upright. The OCT volumes were all acquired with

a Topcon DRI OCT Triton. The OCT was centered on the macula, had a 3

× 3 mm en-face field of view, and each volume contained 256 two-dimensional

cross-sectional images with a size of 992× 512 pixels. The fundus images were

acquired using a KOWA camera with a resolution of 2000 × 2992 pixels and

a Topcon TRC-NW400 camera with a resolution of 1934 × 1956 pixels. The

fundus images in our dataset were centered on the macula or on the midpoint

between optic disc and macula, with both optic disc and macula visible. The

image quality was checked manually. The 300 samples in the GAMMA dataset

correspond to 276 Chinese patients (42% female), which ranged in age from

19-77 and averaged at 40.64±14.53 years old. Glaucoma accounted for 50% of

the sample, including 52% in the early stage, 28.67% in the intermediate stage,

and 19.33% in the advanced stage. Early glaucoma samples were obtained from

64 patients with average age of 43.47±15.49, of whom 14 patients provided

data from both eyes, another 30 patients provided data from the oculus sinister

(OS), and 20 patients provided data from the oculus dexter (OD). Similarly,

intermediate and advanced glaucoma samples were obtained from 35 and 27

patients with average ages of 47.98±17.38 and 46.24±14.47, respectively. In

the intermediate glaucoma samples, 8 patients provided data from both eyes,

15 patients provided OS data, and 12 patients provided OD data. In the ad-

vanced glaucoma samples, 2 patients provided data from both eyes, 8 patients

provided OS data, and 17 patients provided OD data. The non-glaucomatous

samples in the dataset were collected from 150 patients with average age of

35.97±11.29, 57 and 93 patients provided OS and OD data, respectively. We

randomly divided the collected samples of each category (non-glaucoma, early-
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glaucoma, intermediate-glaucoma, and advanced-glaucoma) into three roughly

equal parts and assigned them to each of the three challenge sets, corresponding

to, we prepared 100 data pairs for each the training, preliminary process and

final processes. Because the data sizes in intermediate and advanced glaucoma

categories are relatively small compared to that of early glaucoma category, so

we grouped the intermediate and advanced glaucoma into one category, i.e.,

progressive-glaucoma in the main challenge tasks.

In addition, the GAMMA dataset included the respective glaucoma grades,

the fovea coordinates, and the mask of the cup and optic disc. The GAMMA

dataset is publicly available through https://gamma.grand-challenge.org/,

and is allowed to be used and distributed under CC BY-NC-ND (Attribution-

NonCommercial-NoDerivs) licence. The following sections describe the imple-

mentation of the annotation processes of the three challenge tasks.

2.1.1. Glaucoma Grading

The ground truth of glaucoma grading task for each sample was determined

based on mean deviation (MD) values from visual field reports following the

criteria below: early-stage with MD value higher than -6 dB, intermediate stage

with MD value between -6 and -12 dB, advanced stage with MD value worse

than -12 dB. These visual field reports were generated on the same day as

the OCT examination and were reliable with fixation losses of under 2/13 and

false-positive rate under 15% and false-negative rate under 25% (Li et al. (2020);

Xiong et al. (2021)).

2.1.2. Fovea Localization

The initial fovea coordinate annotation of each fundus image was performed

manually by four clinical ophthalmologists from Sun Yat-sen Ophthalmic Cen-

ter, Sun Yat-sen University, China, who had an average of 8 years of experience

in the field (range 5-10 years). All ophthalmologists independently located the

fovea in the image using a cross marker without having access to any patient

information or knowledge of disease prevalence in the data. The results from

8
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the four ophthalmologists were then fused by a senior ophthalmologist (who has

more than ten years of experience in glaucoma), who checked the four mark-

ers and decided which of these markers should be retained to be averaged to

produce the final reference coordinate.

2.1.3. Optic Disc & Cup Segmentation

Similar to the previous task, the four ophthalmologists manually annotated

the initial segmentation region of the optic cup and disc for each fundus image.

The senior ophthalmologist then examined the initial segmentations and selected

the intersection of the annotated results of several ophthalmologists as the final

reference mask.

2.2. Challenge Evaluation

2.2.1. Glaucoma Grading

For each instance, the participants will predict normal, early-glaucoma or

progressive-glaucoma. We use Cohen’s kappa as an evaluation metric for this

ordinal ternary classification problem. Since our categories are ordered, kappa

is quadratically weighted to manifest the different extents of the error. The final

score of glaucoma grading is represented as:

Sg = 10× κ = 10 × po − pe

1− pe
, (1)

where po is the accuracy, and pe is the probability of predicting the correct

categories by chance.

2.2.2. Fovea Localization

Fovea location is given by its X and Y coordinates. If the image does not

contain a fovea, the estimated coordinate is set to be (0, 0). We use the average

Euclidean distance between the estimated coordinates and the real coordinates

as the evaluation criterion for this task. It is worth noting that the estimated

and the ground-truth coordinate values are normalized according to the image

size. The final score is based on the reciprocal of the average Euclidean distance
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(AED) value, and the denominator addition item is set to 0.1 to keep the score

within 10 points:

Sf =
1

AED + 0.1
(2)

2.2.3. Optic Disc & Cup Segmentation

The Dice coefficient was calculated as the segmentation evaluation metric in

the GAMMA challenge:

Dice =
2|A ∩B|
|A|+ |B|

, (3)

where |A| and |B| represent the number of pixels of the prediction and ground

truth, |A ∩ B| represents the number of pixels in the overlap between the pre-

diction and ground truth. In addition, we used Mean Absolute Error (MAE)

to measure the differences of the vertical cup-to-disc ratio (vCDR) between the

predicted results and the ground truth. vCDR has a direct clinical relevance

as it is a common measure used in ophthalmology and optometry to assess

glaucoma progression. The vCDR is calculated as the ratio of the maximum

vertical diameters of the optic cup and optic disc. Each team was ranked based

on the three metrics of optic cup Dice coefficient, optic disc Dice coefficient, and

MAE. The final weighted score for the optic disc & cup segmentation task was

as follows

Sm =0.25×Dicecup × 10 + 0.35×Dicecup × 10

+ 0.4× 1

MAE + 0.1

(4)

where, the weights were chosen consistent with the REFUGE Challenge (Or-

lando et al. (2020)). Because vCDR was calculated based on OC and OD

segmentation results, the weight for vCDR metric had the highest value, and

because the OD region could limit the OC region, the metric weight for OD

segmentation was set higher than that for OC segmentation.

2.3. Baseline method

Before the challenge start, we provided a method to serve as a baseline

implementation and performance for the challenge. As deep end-to-end learning
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Table 1: Performance of the baselines for glaucoma grading. The results are shown in a format

of mean(%) ± standard deviation(%). We run each method five times to calculate mean and

standard deviation.

Color

fundus

photography

3D

OCT

Disc

region

Ordinal

regression
Kappa

Single-modality

X 67.3±2.1

X 57.5±3.6

X X 67.7±1.8

X X 73.2±1.2

Multi-modality

X X 70.2±0.9

X X X 77.0±0.7

X X X 76.8±0.6

X X X X 81.2±0.3

has been proved to be widely effective for the biology and medical image analysis

(Zhang et al. (2020); Ge et al. (2022))

A simple dual-branch network was used to learn glaucoma grading from fun-

dus images and 3D OCT volumes in an end-to-end manner. An illustration of

the architecture is shown in Figure 3. Specifically, two CNN-based encoders are

used to extract the features from fundus images and OCT volume, respectively.

Two encoders are implemented following ResNet34 (He et al. (2016)) with the

same architecture except for the first convolutional layer. In the fundus branch,

the input channel of the first convolutional layer is set as 3, and in the OCT

branch, it is set as 256. The encoded features of the fundus branch and OCT

branch are concatenated and classified by a fully connected layer. The model is

supervised by cross-entropy loss function in the training stage. We trained it on

the training dataset, evaluated it on the preliminary stage data and reported its

performance on the final test data. We input the fundus images with resolution

256×256, and the OCT images with resolution 512×512. We train the networks
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using Adam optimizer (Kingma and Ba (2014)) with batch size 4. More details

of the baseline can be found in (Fang et al. (2021)). The code of the baseline is re-

leased at https://aistudio.baidu.com/aistudio/projectdetail/1948228.

In the clinic, ophthalmologists use a combination of fundus photographs

and OCT volumes for a more accurate and reliable diagnosis. We find that this

approach is still applicable in deep learning-based computer-aided glaucoma

diagnosis. We compare the performance of the single fundus branch, single

OCT branch, and dual-branch baseline in Table 1. Of note, only the basic

dual-branch model was released as the baseline to the participants (the fifth

row in Table 1). From the table, one can observe that the dual-branch model

outperforms the single branch one by a large margin with less variances. This

indicates that despite the simple multimodal fusion strategy we adopted, multi-

modal images can improve the glaucoma grading performance better than either

of the modalities alone. This motivated us to hold the GAMMA Challenge to

encourage the further exploration of advanced machine learning methods on this

multimodal fusion task.

During the implementation of the baseline, we identified some techniques

that were found particularly useful to obtain good performance on the task

(Fang et al. (2021)). The first is to utilize the local information of optic disc.

Clinically, glaucoma leads to lesions in the optic disc region, such as cup-disc

ratio enlargement and optic disc hemorrhage (Orlando et al. (2020)). Thus, we

cropped the optic disc region of fundus images as the network’s input to make

the network focus on the optic disc and cup. The optic disc region is obtained

through pre-trained optic disc segmentation network. According to the results

in Table 1, the local information extraction gains 7.2% improvement on mean

kappa and 0.2% on standard deviation compared with the baseline.

We also note that glaucoma grading is actually an ordinal classification task.

The three classifications: normal, early-glaucoma, and progressive-glaucoma,

are the deterioration of glaucoma. Thus, in the training process, the loss should

be smaller if the prediction is closer to the ground-truth. For example, pre-

dicting the early-glaucoma as normal should be considered as a smaller error
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than predicting the progressive-glaucoma as normal. Therefore, we adopted

ordinal regression strategy (Niu et al. (2016)) to perform two binary classifi-

cations, respectively. In this case, a severe error will be double-penalized by

both of the classifiers. Specifically, the first classier divides the sample into 0

and 1, that is, to classify whether the input image is a glaucoma sample. The

second classier divides the sample into 0 and 1 to identify the input image as

progressive-glaucoma or early-glaucoma. The labels of the original triple clas-

sification task were converted according to the two binary classification tasks,

that is, the labels of the normal samples were changed to (0,0), the labels of

the early-glaucoma samples were changed to (1,0), and those of the progressive-

glaucoma samples were changed to (1,1). The loss function used in the training

processes was the sum of the two binary cross-entropy losses. According to the

results in Table 1, ordinal regression independently resulted in an average 4.5%

improvement of the models.

3. Methods of participating teams

The methodology applied by the ten top performing teams in the GAMMA

Challenge is summarized in Table 2. In this section, we introduce their methods

in the aspects of data preprocessing, architecture and ensembling strategy.

3.1. Data Preprocessing

In the baseline implementation, we provided a default data augmentation

implemented by some commonly used data augmentation techniques, including

random crop, random flip and random rotation. Most of the teams used this

default augmentation for data preprocessing.

Besides the standard data augmentation, during training, DIAGNOS-ETS

augments the input samples by rescaling with the shorter spatial side randomly

sampled in a range of 224 to 480, and cropping with size of 224 × 224. In the

test phase, they do test-time augmentation for multi-scale ensemble. Inputs are

spatially resized such that the shorter sides are 224, 256, 384, 480 respectively for

13



Table 2: Summary of the ten top performing glaucoma grading methods in the GAMMA

Challenge.

Team Architecture Preprocessing Ensemble Method

SmartDSP (Cai et al. (2022)) Dual-branch ResNet (He et al. (2016))

Fundus: Add Gaussian noise

Resize to 512×512

OCT: Crop height to 150-662

Resize to 512×512

Default Data Augmentation

Pick 3 models with

best accuracy on normal,

early and progressive cases,

respectively. Predict the

results by different thresholds.

Ensemble the results by

the priorities of early,

progressive and normal.

Extract the features of

fundus images and OCT

volumes by two encoders.

Concatenate the encoded

features for the classification.

VoxelCloud

Dual-branch Network

implemented by

3D EfficientNet and EfficientNet

(Tan and Le (2019))

Fundus: Crop Black Margin

Resize to 512×512

OCT: Resize to 256×256

Downsample channels to 128

Default Data Augmentation

Pick 5 best models on 5

different validation folds.

Ensemble the results

by taking the average.

Extract the features of

fundus images by EfficientNet.

Extract the features of

OCT volumes by 3D-EfficientNet.

Concatenate the encoded

features for the classification.

EyeStar

Dual-branch Network

implemented by

Swin Transformer (Liu et al. (2021))

and DENet (Fu et al. (2018b))

Fundus: Crop to optic disc region

by pretrained segmentation network

OCT: Randomly pick ten consecutive

slices betwern 113-153 channels

Default Data Augmentation

During the testing process,

successively feed 30

groups of 10

consecutive OCT slices

into the network.

Taking the average of the 30

predictions as the final predictions

Extract the features of

fundus images by fundus disc-aware

ensemble network.

Extract the features of

OCT volumes by ResNet.

Concatenate the encoded

features for the classification.

HZL
UNet (Ronneberger et al. (2015)) with

EfficientNet Backbone

Fundus: Resize to 1024×1024

OCT: Resize to 1024×1024

Default Data Augmentation

Pick 5 best models on 5

different validation folds.

Ensemble the results

by taking the average.

Design a multi-task UNet

to jointly learn glaucoma grading,

optic disc & cup segmentation

and fovea localization.

The embedding of the UNet encoder

is discriminated by a full connected

layer for glaucoma grading.

MedIPBIT Dual-branch EfficientNet

Fundus: Crop to optic disc region

by pretrained segmentation network.

Resize to 128×128

OCT: Crop the Black Background

by gradient detector

Resize to 128×128

Default Data Augmentation

Split the dataset for

training and validation

by three different strategies.

Pick 2 best performing models

in each split

to get a total of 6 models.

Ensemble the results of 6 models

by averaging.

Extract the features of

fundus images and OCT

volumes by two encoders.

Concatenate the encoded

features for the classification.

IBME Dual-branch ResNet

Fundus: Resize to 256×256

OCT: Resize to 512×512

Default Data Augmentation

Extract the features of

fundus images and OCT

volumes by two encoders.

Concatenate the encoded

features for the classification.

WZMedTech Dual-branch ResNet

Fundus: Resize to 512×512

Default Data Augmentation + Image Jitter

OCT: Resize to 256×256

Pick the first and the

second best model.

Predict as normal when

both models predicted

the case as normal.

Use the output of the OCT branch

of the second best model when

either of the two

models predicts glaucoma.

Predict glaucoma grading

based on fundus images

and OCT volume by two networks.

Take the average of

the two networks’ results.

DIAGNOS-ETS

Dual-branch Network

implemented by

3D ResNet (Tran et al. (2015)) and ResNet

Fundus: Resize with the shorter spatial

side randomly sampled in 224 to 480

and randomly crop to 224×224

OCT: Downsample channels to 16

Randomly pick one slice in training

Pick specific slices in the inference

Crop width to 224-480

Resize the original images with

shorter spatial side randomly

sampled in range 256-480

Default Data Augmentation

Ensemble multi-scale

prediction by averaging them

with temperature scaling

Extract the features of

fundus image and OCT volume

by ResNet and 3D ResNet,

respectively.

Concatenate the encoded

features for the classification.

During training, the encoded features of

two networks are aligned by

minimizing the KL divergence

MedICAL Dual-branch EfficientNet

Fundus: Resize 1024×1024

Enhanced by optic disc and cup mask

OCT: Transfer to Retina Tickness Heatmap

Resize 400×400

Default Data Augmentation

Take the average

of multiple trained models

Extract the features of

fundus images and OCT

volumes by two encoders.

Concatenate the encoded

features for the classification.

FATRI-AI EfficientNet

Fundus: Crop Black Margin

Resize 224×224

OCT: Random pick 3 slices

Resize 224×224

Default Data Augmentation

Stack two models,

output with confidence

> 0.7 in the first model

is used as pseudo labels

to train the second model.

Concatenate fundus image

and OCT volume as the input

to a single network.

The network predicts

the probability of each class.
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each model, and all cropped to 224×224.Then they adopted ensemble over multi-

scale results for the prediction. MedIPBIT cropped the fundus images to the

optic disc region. In the training stage, they used the optic disc mask provided in

GAMMA dataset for this cropping. In the inference stage, they used instead the

masks estimated by the pre-trained segmentation network. The segmentation

networks were trained on the auxiliary tasks on GAMMA dataset. Besides

MedIPBIT, MedICAL also utilized OD/OC mask for data preprocessing. They

enhanced their fundus image by OD/OC mask. Specifically, OD/OC region of

the original image will be multiplied by a factor of 0.05 and added to the original

image. MedICAL also transferred the 3D OCT volume to 2D retinal thickness

heatmap by Iowa Reference Algorithm (Rosenthal et al. (2016)). An illustration

of their process is shown in Figure 4.

3.2. Architecture

For the fundus & OCT-based glaucoma grading, almost all the teams adopted

dual-branch network structure. Analogously to the baseline method, two branches

extract the features of fundus images and OCT volumes. The encoded features

are then concatenated for the classification. Unlike this strategy, FATRI-AI used

a single network inputted by concatenated fundus image and OCT volume. Be-

sides FATRI-AI, HZL also used a single branch of network. They proposed a

multi-task UNet network to jointly learn the glaucoma grading, optic disc &

cup segmentation and fovea localization. The glaucoma grading head is at-

tached to the UNet encoder, while the segmentation head and localization head

are attached to the UNet decoder. Through the multi-task learning strategy,

the correlated features of different tasks will be enhanced and thus improve the

performance of all the tasks.

Although most of the teams adopted a dual-branch network architecture,

their implementations varied greatly. VoxelCloud and DIAGNOS-ETS adopted

3D Network (Tran et al. (2015)) in OCT branch to extract the features from 3D

OCT volume. EyeStar adopted fundus Disc-aware Ensemble Network (DENet)

(Fu et al. (2018b)) in fundus branch. Fundus disc-aware ensemble network uses
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three networks to respectively process the raw fundus image, optic disc region of

the fundus image, and polar transformed optic disc region. The predictions of

three networks are combined to obtain the final prediction. An illustration of 3D

network and DENet is shown in Figure 5. WZMedTech used two independent

networks to predict glaucoma grades based on fundus image and OCT volume,

respectively. The final result is the average of the two predictions.

Regarding the supervision signal, most teams applied cross-entropy loss.

DIAGNOS-ETS has an extra loss to align the fundus feature and OCT feature.

Toward that end, they minimize the Kullback–Leibler (KL) divergence between

these two encoded features. Instead of supervising the integrated features of

two modalities, EyeStar and WZMedTech supervised the two branches inde-

pendently. They took the average of the independent predictions as the final

result. In the ablation experiments, we did not observe differences between these

supervision strategies.

3.3. Ensemble strategy

Ensembling can substantially improve the quantitative result of glaucoma

grading. A basic idea is to pick the best models on different validation folds and

take the average of the results. Teams VoxelCloud, HZL, MedIPBIT, MedICAL

adopted this strategy.

A unique ensemble strategy adopted in GAMMA Challenge is to exploit the

ordinal nature of class labels for ensembling. Separating the triple-classification

problem into two binary-classification ones can help to improve the results.

Both SmartDSP and WZMedTech adopted a similar idea for their ensembling

strategy. WZMedTech discriminated early/progressive cases based on the dual-

model agreed glaucoma cases. They double-checked the normal cases by two dif-

ferent models, i.e., first discriminated the normal/glaucoma cases, then classified

progressive/early by the second model on predicted glaucoma cases. SmartDSP

followed the same high-level idea, but adopted a more sophisticated strategy.

They first picked three models with the best accuracy on normal, early, and pro-

gressive cases, respectively. Then they discriminated the progressive cases by
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Algorithm 1 Ensembling strategy of SmartDSP

1: Train k models, and pick three models with the best accuracy on normal,

early, and progressive cases, which are denoted as Mn, Me, and Mp, respec-

tively.

2: for each sample x in dataset X do

3: x← early − glaucoma

4: if Mp(x) > 0.6 then

5: x← progressive− glaucoma

6: end if

7: if Mn(x) < 0.5 then

8: x← normal

9: end if

10: if Me(x) > 0.9 then

11: x← early − glaucoma

12: end if

13: end for

thresholding the progressive model with 0.6, discriminated the cases as glaucoma

by thresholding the normal model with 0.5, discriminated early-glaucoma by

thresholding the early model with 0.9. The samples rejected by all three models

will be classified as early-glaucoma by default. The pseudo code of this process

is shown in Algorithm 1. Besides these ensembling strategies, DIAGNOS-ETS

rescaled the input images to different sizes in the inference stage, and com-

bined the multi-scale predictions by averaging them with temperature scaling.

Specifically, they combines the multi-scale results through:

p =

N∑
i=1

pti
N
, (5)

where pi are the multi-scale predictions, p is the final prediction, N is the number

of scales, t is a learned scalar parameter. FATRI-AI stacked two models, where

the instances with high confidence in the first model (over 0.7) were used as

pseudo labels to train the second model.
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4. Results

4.1. Challenge Results

The top ten teams ranked by glaucoma grading score are SmartDSP, Voxel-

cloud, EyeStar, HZL, MedIPBIT, IBME, WZMedTech, DIAGNOS-ETS, Med-

ICAL, and FATRI AI. The quantitative scores of the glaucoma grading task

measured by kappa are shown in Table 3. We reported their performances in

the preliminary stage (evaluation on preliminary set) and the final stage (eval-

uation on final test set). Comparing the ranking in the preliminary stage with

that of the final stage, we can see SmartDSP, Voxelcloud, EyeStar, HZL, IBME

all keep or raise the rankings on the test dataset, indicating they are more ro-

bust than the other methods. The teams ranked lower are generally caused

by the worse generalization capability. In particular, for MedIPBIT, IBME,

WZMedTech, DIAGNOS-ETS, and MedICAL, we can see a dramatic decrease

of the performance on the final test set.

The confusion matrices calculated on the test set are shown in Figure 6.

We note that methods achieved similar performance in the prediction of nor-

mal/glaucoma. The error of predicting glaucoma as normal is generally in 4% to

8% range. This rate is lower than the reported misdiagnosed rate of junior oph-

thalmologists (Trobe et al. (1980)), indicating the clinical application potential

of the models.

Different approaches widened the gap in the performance of early/progressive-

glaucoma classification. Teams ranked higher generally achieved better perfor-

mance on both the early-glaucoma accuracy and progressive-glaucoma accuracy.

It is also worth noting that the accuracy of early glaucoma and progressive glau-

coma has different significance in clinical scenarios. In clinical scenarios, pre-

dicting progressive-glaucoma as early-glaucoma is generally more undesirable

than the other way around. Thus, among models with similar overall perfor-

mance, those with higher progressive-glaucoma accuracy will be a better choice

in clinical practice.

To encourage the teams participate in all three tasks of the GAMMA chal-
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Table 3: Glaucoma grading results in the GAMMA Challenge. Kappa(%) is calculated to

measure the performances. Teams are ranked by the overall score. Red and blue denote the

rise and fall of the rankings, respectively, while Gray denotes no change in the ranking between

the preliminary and the final test stage.

Rank Team Preliminary Final

1 SmartDSP 93.38 (1) 85.49

2 VoxelCloud 90.71 (6) 85.00

3 EyeStar 88.28 (7) 84.77

4 HZL 89.89 (8) 84.01

5 IBME 87.60 (9) 82.56

6 MedIPBIT 93.43 (2) 80.48

7 WZMedTech 90.44 (5) 79.46

8 DIAGNOS-ETS 91.70 (3) 75.36

9 MedICAL 90.65 (4) 72.90

10 FATRI-AI 87.34 (10) 69.62

lenge, the official final ranking is calculated with the scores from all three com-

petition tasks:

Score =0.4× Scoreg + 0.3× Scoref

+ 0.3× Scorem.
(6)

The published final ranking is shown in Table 4. The ranking of the auxil-

iary tasks is shown in the Appendix. The detailed leaderboards can also be

accessed on the GAMMA challenge website at https://aistudio.baidu.com/

aistudio/competition/detail/90/0/leaderboard.

4.2. Methodological Findings

In this section, we draw the key methodological findings by doing the ab-

lation study on the techniques proposed in the GAMMA challenge. A brief

conclusion is that a 3D Net & DENet dual branch architecture with ordinal
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Table 4: Final ranking of the GAMMA challenge.

Rank Team Member Institute Score

1 SmartDSP
Jiongcheng Li, Lexing Huang, Senlin Cai,

Yue Huang, Xinghao Ding
Xiamen University 8.88892

2 Voxelcloud
Qinji Yu, Sifan Song, Kang Dang, Wenxiu

Shi, Jingqi Niu

Shanghai Jiao Tong University; Xi’an

Jiaotong-Liverpool University; VoxelCloud

Inc.

8.83127

3 EyeStar
Xinxing Xu, Shaohua Li, Xiaofeng Lei, Yanyu

Xu, Yong Liu
Institute of High Performance Computing, ASTAR 8.72345

4 IBME Wensai Wang, Lingxiao Wang
Chinese Academy of Medical Sciences and

Peking Union Medical College
8.70783

5 MedIPBIT
Shuai Lu, Zeheng Li,Hang Tian,Shengzhu

Yang,Jiapeng Wu
Beijing Institute of Technology 8.70561

6 HZL Shihua Huang, Zhichao Lu

Hong Kong Polytechnic University;

Southern University of Science and

Technology

8.68781

7 WZMedTech
Chubin Ou, Xifei Wei, Yong Peng,

Zhongrong Ye

Southern Medical University; Tianjin

Medical University; Xinjiang University
8.65384

8 DIAGNOS-ETS

Adrian Galdran,Bingyuan Liu,José

Dolz,Waziha Kabir,Riadh Kobbi,Ismail Ben

Ayed

ETS Montreal; DIAGNOS Inc. 8.59884

9 MedICAL Li Lin, Huaqing He, Zhiyuan Cai
Southern University of Science and

Technology
8.43841

10 FATRI AI
Qiang Zhou, Hu Qiang, Cheng Zheng,

Tieshan Liu, Dongsheng Lu, Xinting Xiao
Suixin (Shanghai) Technology Co., LTD. 8.27601

ensemble strategy performs best on this task. The focus on the OD/OC re-

gion also helps to improve the glaucoma grading. The detailed analysis and

discussion are as follow.

4.2.1. Ablation study on architectures in GAMMA

In order to fairly verify the effectiveness of proposed architectures, we did an

ablation study utilizing our baseline implementation as reference. We kept ev-

erything the same as the baseline and only changed the architectures. The quan-

titative results are shown in Table 5. We measure the results by the overall kappa

and also the accuracy value of each class. N-Acc, E-Acc and P-Acc denotes the

accuracy values of normal, early-glaucoma and progressive-glaucoma, respec-

tively. G-Acc denotes the glaucoma accuracy value of both early-glaucoma and

progressive-glaucoma classes.

From Table 5, we can see, first, the awareness of optic disc region is helpful
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Table 5: Comparison of the network architectures in the GAMMA Challenge. ’DualRes’

denotes the dual-branch ResNet architecture adopted by SmartDSP, MedIPBIT, IBME,

WZMedTech and MedICAL. ’Res-3D’ denotes a dual-branch ResNet architecture with a 3D-

ResNet OCT branch and a standard fundus branch, which VoxelCloud and DIAGNOS-ETS

adopt. ’Res-DEN’ denotes a dual-branch ResNet architecture with DENet fundus branch and

standard OCT branch, which EyeStar adopts. ’SinCat’ and ’SinMulti’ denote the single net-

work inputted by fundus & OCT concatenation and multi-task learning strategy adopted by

FATRI-AI and HZL, respectively. The results are shown in a format of mean(%) ± standard

deviation(%). We run each method five times to calculate mean and standard deviation.

N-Acc E-Acc P-Acc G-Acc Kappa

DualRes 84.31±1.77 27.20±2.26 71.66±2.33 42.04±1.79 70.26±0.94

Res-3D 82.74±1.27 24.26±2.02 73.32±1.21 52.18±1.07 73.81±0.48

Res-DEN 94.63±1.02 24.21±1.21 76.75±1.62 48.13±0.95 76.82±0.41

SinCat 74.31±1.23 33.60±3.60 52.50±2.85 42.86±2.22 61.31±1.82

SinMulti 89.02±2.24 20.80±3.18 67.21±2.53 51.46±1.91 75.31±1.09

3D-DEN 97.88±0.91 33.12±1.76 54.56±1.86 43.14±0.92 79.55±0.21

for glaucoma grading. Res-DEN and SinMulti utilized the optic disc & cup

segmentation mask, and they achieved higher and steadier performance. In

particular, Res-DEN achieves a much better overall performance than standard

DualRes (increases a 6.42% on mean kappa and decreases a 0.53% on standard

deviation), indicating DENet is a better choice than the standard network for the

fundus branch. In addition, Res-3D outperforms DualRes by a 3.41% on mean

kappa and a 0.46% on kappa standard deviation, indicating 3D neural network

works better than the standard network as an OCT branch. We also tried

to combine the two advantages, by adopting 3D network on OCT branch and

adopting DENet on fundus branch. The results are denoted as 3D-DEN in Table

5. We can see that the combined architecture outperforms both approaches.

Specifically, it outperforms Res-3D by a 5.74% on mean kappa, outperforms

Res-DEN by a 2.73% on mean kappa, and outperforms basic DualRes by an

outstanding 9.15% on mean kappa with the lowest standard deviation among all

methods. In conclusion, in terms of the architecture, a 3D neural network OCT

branch with a DENet fundus branch is suggested for multi-modal glaucoma
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grading.

4.2.2. Ablation study on ensemble strategies in GAMMA

We also performed the ablation study on the ensemble strategies proposed

by top ten teams. The quantitative results are shown in Table 6. A valuable

conclusion that can be drawn from the results is that multi-model ordinal en-

sembling method, which WZMedTech and SmartDSP adopted, are superior on

glaucoma grading task. Specifically, 2-ordinal adopted by WZMedTech outper-

forms standard five fold average ensemble by a 4.52% mean kappa improvement

and 0.09% standard deviation descent, 3-ordinal adopted by SmartDSP outper-

forms standard five fold average ensemble by a 7.53% mean kappa improvement

and 0.23% standard deviation descent. This improvement comes from their

divide and conquer strategy, i.e., separating this triple classification task to

multiple binary classification tasks, where the models that perform the best on

each sub-tasks will be picked for the final ensemble. SmartDSP also classified

the sample as early-glaucoma by default when all the models do not have high

confidence in their prediction, a strategy often applied by clinical experts in

their decision making. In clinical practice, when multiple experts give diverse

opinions and are not confident, this case will be considered suspected early

glaucoma for further screening. Due to the similarity of strategies, the ordinal

ensemble strategy may be of use in the real-world clinical scenario.

4.2.3. Effects of auxiliary tasks

Participants are also encouraged to utilize the optic disc & cup mask and

fovea location information to improve glaucoma grading. In the GAMMA Chal-

lenge, we saw that the prior knowledge of optic disc & cup mask helped to im-

prove the glaucoma grading performance. EyeStar and MedIPBIT both cropped

optic disc regions from the fundus images in data preprocessing. EyeStar also

adopted DENet to individually process the optic disc region and polar trans-

formed optic disc region. MedICAL utilized the optic disc & cup mask to

enhance the fundus inputs. This is also in line with the previous studies (Wu
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Table 6: Performance of proposed ensemble strategies in the GAMMA Challenge.’Stacked’

denotes pseudo-label retraining strategy adopted by FATRI-AI, ’Rescale’ denotes multi-scale

models ensemble strategy adopted by DIAGNOS-ETS, ’3-fold’, ’5-fold’ denote averaging model

predictions on 3-fold, 5-fold validation set respectively, ’2-ordinal’ denotes dual-model ordinal

ensemble strategy adopted by WZMedTech, ’3-ordinal’ denotes triple-model ordinal ensemble

strategy adopted by SmartDSP. The results are shown in a format of mean(%) ± standard

deviation(%). We run each method five times to calculate mean and standard deviation.

Ensemble N-Acc E-Acc P-Acc G-Acc Kappa

Stacked 90.12±0.51 11.82±1.21 84.02±1.54 47.45±0.85 71.31±0.58

Rescale 91.82±0.64 24.21±1.71 54.81±1.02 40.15±0.94 73.59±0.42

3-fold-ave 92.57±0.31 37.54±1.25 57.92±1.87 47.02±0.61 74.55±0.26

5-fold-ave 90.25±0.22 27.72±0.66 71.04±0.74 49.56±0.31 75.33±0.14

2-ordinal 96.14±0.14 44.02±0.27 54.26±0.19 49.06±0.08 79.85±0.05

3-ordinal 98.06±0.05 52.06±0.10 66.71±0.12 59.23±0.05 82.80±0.03

et al. (2020); Zhao et al. (2019)) and what we found in Section 2.3. In Table

1, we can also see that optic disc region improves the dual-branch model more

than the single fundus-branch. This is because OCT volume corresponds to

the optic disc region of the fundus image. Cropping the optic disc region helps

to align the features of the two branches. However, we also noted that this

improvement decreases in the high-performance models. As the multi-modality

results shown in Table 1, on the models with no ordinal regression, disc region

cropping improves a 6.79% from 70.2% to 77.0%. However, on the models with

ordinal regression, disc region cropping only improves a 4.40% from 76.8% to

81.2%. We conjecture that the stronger models can extract the optic disc region

on their own and do not need this prior knowledge anymore.

5. Discussion

5.1. Multimodal Fusion strategies in GAMMA

In the GAMMA Challenge, we note that most multimodal fusion methods

that gained high performance in GAMMA are very straightforward. Many ad-

vanced multimodal fusion techniques proposed recently were not adopted for this

task. The main reason is that the fusion of fundus image and OCT volume is
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very different from the other more common multimodal fusion tasks. Advanced

multimodal fusion algorithms can be divided into two categories: pixel-level

and feature-level. Pixel-level fusion operates directly on the raw pixels of the

images, making it a simple and widely used technique in medical image clas-

sification. However, it can only be applied to data with the same dimensions,

such as brain magnetic resonance imaging (MRI) and computed tomography

(CT) scans (Sahu et al. (2014); Singh and Anand (2018)), Positron Emission

Tomography (PET) and MRT scans (Bhavana and Krishnappa (2015); Sha-

banzade and Ghassemian (2017); Lai et al. (2017)), or the chest PET and CT

scans (Liu et al. (2010)). This makes it inapplicable to our 2D-3D image fusion.

Feature-level fusion, on the other hand, operates on features extracted from the

images. Unlike the GAMMA methods, which typically perform fusion at the

final embedding stage, these techniques often fuse multi-scale features with spa-

tial attention, similarity matching (Meher et al. (2019)) or domain adaptation

(Han et al. (2022); Bian et al. (2021); Dou et al. (2018)) in applications such

as lung-based Fluoro-D-Glucose PET (FDG PET) and MRI fusion (Das and

Kundu (2013)) or Ultrasound and Single-Photon emission CT (SPECT) fusion

(Tang et al. (2016)). However, they are also difficult to apply to our case, as

the two modalities (OCT and fundus) have a significant scale difference and

lack strong spatial correspondence. OCT images typically focus on a small re-

gion near the fovea, while fundus images cover a large area of the fundus. To

our knowledge, few multimodal fusion techniques can be directly adopted for

the fundus-OCT fusion task, and explains why the straightforward dual-branch

concatenation model was the main choice in the GAMMA Challenge. This

indicates that more specific multimodal fusion algorithms are required in this

field.

5.2. Challenge strengths and limitations

GAMMA was the first open initiative aiming to evaluate the possibility to

develop automated methods for glaucoma grading from a combination of fundus

images and OCT volume, mimicking the clinical operations of the ophthalmolo-
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gists to some extent. Toward that end, the challenge provided to the community

with the largest public available dataset of fundus photographs and OCT vol-

ume pairs to date. The unique characteristic of GAMMA provides a platform

to establish more reliable and clinical-alike automated glaucoma classification

methods, inspired by the clinical observation that the complementary fundus

image and OCT can significantly improve the diagnostic accuracy of ophthal-

mologists (Anton et al. (2021)). In addition, GAMMA provided the glaucoma

diagnostic labels according to the clinical diagnostic standard (normal/early-

stage/progressive) with a high quality reference OD/OC masks and fovea posi-

tions. These additional information is helpful to calibrate the glaucoma grading

methods, as it was observed that training with fundus-derived labels have a neg-

ative impact on performance to detect truly diseased cases (Phene et al. (2019)).

To our knowledge, GAMMA is also the only available dataset to establish valid

deep neural networks for now. The only other dataset similar to GAMMA (Raja

et al. (2020)) contains only 50 pairs of fundus-OCT scans, which is commonly

not enough to train and evaluate the deep learning methods.

In the GAMMA challenge, the evaluation framework we designed matched

the principles for evaluating retinal image analysis algorithms proposed by

Trucco et al. (2013). Specifically, the GAMMA dataset can be easily accessed

through the website associated with the Grand Challenge. Moreover, an open

and uniform evaluation interface is provided on the website to automatically

evaluate any results submitted. The evaluation process is exactly the same as

the GAMMA Challenge. Such an online evaluation provides the further par-

ticipants a platform to test their algorithms and allows them to fairly compare

with the algorithms on the GAMMA leaderboard. In this way, the effective-

ness of the proposed techniques can be conveniently and fairly verified, which

encourages the development of the further novel algorithms.

To prevent the submitted method to be overfitting, only the training dataset

is released to the registered teams in the challenge. Moreover, each team was

allowed to request a maximum five times evaluation on the preliminary data

set per day to adjust their algorithms. In the final stage of the challenge,
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the submitted methods will only be evaluated once by the test dataset as the

final results. Our conclusion and analysis can therefore remain unbiased by

this issue. Since the online evaluation on the preliminary dataset is limited,

most teams split the released training dataset to several parts offline for the

private training and evaluation. The future challenges might perhaps consider

to split the dataset to four parts, for the purpose of training, validation, online

evaluation and final test, respectively. Among them, the training set and the

validation set are the released labeled data sets, participants can use these sets

to train the models directly, or they can mix them and design their own training

and validation sets or cross-validation sets. These released labeled samples will

not appear in the online evaluation and final test sets.

Regarding the technical methodology, we aim to find out the most effective

solution for multi-modality glaucoma grading task in GAMMA. For that pur-

pose, different from many other challenges, we did not allow the participants

to use the extra data to train their models. In addition, the source code of the

wining teams is required to be submitted with their final results. These ensure

the methods proposed can be fairly compared, so that the effective techniques

can be identified in the challenge. We also note that many factors are tangled

together to effect the final results. This often bother the readers who want

to quickly find out the most effective modules on this task, like which is the

most effective architecture on this task or which is the most effective ensem-

ble strategy on this task. Thus we also do the ablation study on the wining

teams to identify the effectiveness of each proposed module. Since the source

code of the wining teams is submitted, we are able to correctly reproduce their

methods and do the comparison. Such an ablation study provides the future

researchers/developers a cookbook to design their own models.

One limitation of GAMMA is the size of the dataset. Although GAMMA is

the largest fundus-OCT paired data set to date, it is still not big enough for de-

veloping capable enough deep learning models. Fundus images based glaucoma

classification often provided larger datasets, for instance, our previous REFUGE

(Orlando et al. (2020)) and REFUGE2 (Fang et al. (2022)) challenges released
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1600 annotated fundus images in total. Moreover, it is worth mentioning that

the diverse ethnicities are lack in the GAMMA dataset, as the images correspond

to a Chinese population. Although OCT may not vary too much, the fundus

images of different ethnicities will be different due to changes in the pigment of

the fundus. Therefore, the algorithms in the GAMMA challenge might need to

be retrained before applying to a different population. These limitations should

be addressed in future challenges by a large-scale multi-ethnicities collection of

data, to ensure the generalization of the models. We think the main reason of

the absence of explainability is we did not take explainability as a metric to

rank the teams in the challenge.

In addition, we note that all the methods in the GAMMA challenge are based

on black-box neural networks, and few of them are interpretable. Explainability

is an important factor for the clinical adoption of CAD methods, but it is often

less-explored in this field. One team, HZL, did make an effort to incorporate

explainability into their model by using a multi-task learning approach that

jointly learned glaucoma grading and optic disc and cup segmentation. In this

way, the segmentation results could be used as evidence of the neural network’s

attention to the relevant parts of the image. Moreover, it is also ineffective to

apply explainability methods from the deep learning community to our cases. In

deep learning, explainability often refers to the ability to highlight the regions of

interest in an image, such as a mustache on a face to recognize gender, or in our

case, the optic disc and cup region on a fundus image to diagnose glaucoma.

Many explainability techniques have been proposed for this purpose, such as

the popular classification activation map (CAM) based methods. However, this

type of explainability is not sufficient for medical image classification. In our

case, it is not just the region but the ratio of the optic disc to the cup that

is discriminative for diagnosing glaucoma. This is a problem that still needs

to be studied by both machine learning and clinical research communities. In

the future, we are considering adding explainability as one of the metrics in

our challenges to encourage the development of these technologies for clinical

applications. We have also acknowledged the limitations of the current methods
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and discussed the need for further research in this area in our paper.

5.3. Clinical implications of the results and future work

The GAMMA challenge is organized aiming to answer an open question:

Should we develop automated glaucoma diagnosis based on a combination of

fundus photography and OCT, like what we do clinically? Up to now, the

GAMMA challenge seems to give us a preliminary but positive answer: fudus-

OCT combined glaucoma grading obviously outperforms which using only fun-

dus or OCT data. Comparing Table 1 and Table 4, we can see a simple fusion

of 2D fundus and 3D OCT gains about 10% improvement against the single-

modality. Another 10% improvement can gain from the advanced design of the

model. To compare with the human experts, the sensitivities (considering the

classification of normal and early/progressive glaucoma) of top-3 teams (0.959,

0.918 and 0.959) have been considerably higher than reported sensitivities of

junior ophthalmologists (0.694 to 0.862) (Anton et al. (2021)).

To move a step further, could these models be applied in the real clinical sce-

nario to automatically screen the glaucoma suspect? It is still an open question.

But first, an automated, objective diagnosis system is able to to mitigate the

human individual bias and to save human experts substantial time. In addition,

as the non-invasive, cost-efficient and early-stage glaucoma sensitive glaucoma

screening tools, fundus photographs and OCT are widely used by the clinical

experts for the primary screening of glaucoma suspect (Chen et al. (2019)). In

this case, fundus and OCT combined automated glaucoma detection seems to

be an appropriate solution for the large-scale community screening. These mod-

els can achieve high sensitivities (above 0.9 for the top three teams) and better

overall performance than single-modality models. Although these results are

limited to a specific image population, we can still envision this technique to be

widely used in clinic in the future.

The functional parameters like vision field test and IOP will be considered

to be contained for the automated glaucoma detection in the future. Although

the tools for ONH examination, like fundus images and OCT are cost-efficient
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and complementary to detect early-stage glaucoma, the clinical gold standard

for glaucoma is vision field, which indicates the functional impairment scale.

Besides, IOP is also a valid biomarker indicating the risk of damage to the

optic nerve, causing glaucoma and permanent vision loss. In the future work,

we will explore the possibility of further combining IOP measurement data and

visual field test data to create an automated glaucoma detection model in full

accordance with the clinical glaucoma diagnosis criteria. Such models may have

the chance to be deployed in both large-scale community screening scenario and

in-hospital diagnosis scenario.

6. Conclusion

Following the clinical glaucoma screening standard, we held a challenge for

automated glaucoma grading from both fundus images and OCT volumes, called

Glaucoma grAding from Multi-Modality imAges (GAMMA) Challenge. In this

paper, we introduced the released GAMMA dataset, the process of the chal-

lenge, the evaluation framework and the top-ranked algorithms in the challenge.

Detailed comparisons and analyses are also conducted on the proposed method-

ologies. As the first in-depth study of fundus-OCT multi-modality glaucoma

grading task, we believe GAMMA will be an essential starting point for further

research on this important and clinically-relevant task.

The data and evaluation framework are publicly accessible through https://

gamma.grand-challenge.org/. The code and technical reports of top-10 teams

are released at https://gamma.grand-challenge.org/technical-materials/.

Future participants are welcome to use our dataset and submit their results on

the website to benchmark their methods.
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Figure 2: An illustration of the GAMMA auxiliary tasks: optic disc/cup (OD/OC) segmen-

tation and fovea localization on fundus images.
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Figure 3: Dual-branch network architecture for glaucoma grading. Blue blocks denote the

OCT network branch. Red blocks denote the fundus network branch. The features of two

branches are concatenated for the final classification.
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Figure 4: Data preprocessing of MedICAL. They enhanced fundus images by OD/OC mask

and transfer the 3D OCT volume as 2D retinal thickness map.
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Figure 5: Illustration of OCT 3D Network branch and fundus DENet branch. 3D Network is

adopted by team VoxelCloud and team DIAGNOS-ETS. DENet is adopted by team EyeStar.

For the OCT 3D Network branch, the encoded feature is flattened and concatenated with

that of the fundus branch. For the fundus Disc-aware ensemble branch, the features of three

subbranches are concatenated with OCT features for the classification, respectively. The final

prediction is the average of the three subbranches.
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Figure 6: Glaucoma grading confusion matrix of each team. N, E, P denote normal, early-

glaucoma and progressive-glaucoma respectively.
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Appendix

In the following sections, we briefly introduce the methods proposed for the

auxiliary tasks.

Fovea Localization

The ranking of fovea localization task is shown in Table 7. The results are

evaluated by the fovea localization score (see Section 2.2) and Euclidean distance

(ED). Teams are ranked by the fovea localization score. The methods of the

teams are summarized in Table 9. Analogously to the glaucoma grading task,

we also implemented a baseline for fovea localization task, which is shown in

Figure 7. The input of the network is the whole fundus image, and the output is

a 2D vector indicating the coordinate of the fovea center. The backbone of the

network is ResNet50 and is supervised by the combination of Euclidean distance

and MSE loss.

Table 7: Fovea localization ranking in the GAMMA Challenge.

Rank Team Score ED

1 DIAGNOS-ETS 9.60294 0.00413

2 IBME 9.58847 0.00429

3 SmartDSP 9.57458 0.00444

4 MedIPBIT 9.53757 0.00485

5 Voxelcloud 9.53443 0.00488

6 EyeStar 9.51465 0.0051

7 WZMedTech 9.45846 0.00573

8 MedICAL 9.34639 0.00699

9 FATRI AI 9.33749 0.0071

10 HZL 9.22303 0.00842

On fovea localization task, the methods of the teams varies a lot. In the

top-10 teams, SmartDSP, MedIPBIT, WZMedTech processed the task as a co-
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ordinate regression task, just like we did in the baseline method. VoxelCloud

and DIAGNOS-ETS processed the task as a binary segmentation task. They

generated a circle centered on the fovea location. The circle is then taken as

the segmentation target for the binary segmentation task. The center of the

segmented result is finally taken as the fovea location. Eyestar, IBME and

MedICAL processed the task as a heatmap prediction task. They generated

the ground-truth heatmap by Gaussian kernel. This strategy is similar to the

binary segmentation, except it is supervised by a soft target, which is a normal

distribution centered on fovea location. In contrast, FATRI-AI processed the

task as a detection task. They generated a 160×160 square centered on the

fovea location and used a YOLO (Redmon et al. (2016)) network to detect the

region.

Almost half of the teams utilized a coarse-to-fine multi-stage strategy, in-

cluding SmartDSP, EyeStar, MedIPBIT, WZMedTech and MedICAL. Most of

them cropped Region Of Interest (ROI) based on the coarse stage predictions.

The cropped region is then refined by the later stage. EyeStar proposed a

more sophisticated architecture based on this strategy and named it Two-Stage

Self-Adaptive localization Architecture (TSSAA). They first cropped multi-scale

ROI based on the coarse predictions. Then they fused both multi-scale ROI

and coarse-level features using sequential ROI Align layer, concatenation, self-

attention modules (Vaswani et al. (2017)) and Fuse layer. An illustration of

TSSAA is shown in Figure 7.

OD/OC Segmentation

The ranking of OD/OC segmentation task is shown in Table 8. The results

are evaluated by the two Dice values, vertical optic Cup-to-Disc Ratio (vCDR)

and the OD/OC segmentation score (see Section 2.2) in the GAMMA Challenge.

Teams are ranked by the OD/OC segmentation score. The methods of the teams

are summarized in Table 8. A standard UNet is also adopted as the baseline of

the task.

Like the fovea localization task, all the teams except HZL adopted a coarse-
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Table 8: OD/OC segmentation ranking in the GAMMA Challenge.

Rank Team Score Dice-disc(%) Dice-cup(%) vCDR

1 Voxelcloud 8.36384 96.25 87.84 0.04292

2 DIAGNOS-ETS 8.3275 95.96 87.74 0.04411

3 WZMedTech 8.31621 96.11 88.04 0.04538

4 HZL 8.30093 95.83 88.00 0.04562

5 SmartDSP 8.28488 95.79 88.01 0.04642

6 MedICAL 8.27264 95.75 87.57 0.0464

7 IBME 8.2309 95.79 87.66 0.04887

8 FATRI AI 8.18773 95.40 86.69 0.04917

9 MedIPBIT 8.15502 95.49 87.67 0.05258

10 EyeStar 8.07253 94.77 85.83 0.05326

to-fine multi-stage strategy. Generally speaking, OD ROI will be first obtained

through the coarse OD segmentation stage. The cropped OD patches will be

sent to a subsequent Fine-grained OD/OC segmentation network to obtain the

final result. Different from the others, VoxelCloud utilized the blood vessel

information to improve the OC/OD segmentation. They first used a pre-trained

model to obtain the fundus images’ blood vessel segmentation masks. The vessel

masks are then concatenated with fundus images as the input. An illustration

of their method is shown in Figure 8.
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Table 9: Summary of the fovea localization methods in the GAMMA Challenge

Team Architecture Preprocessing Ensemble Method

SmartDSP He et al. (2022) Efficientnet-b4

(i) Center crop to 2000×2000,

padding when height

or width less than 2000

(ii) Resize to 224×224

(iii) Default Data Augmentation

2-fold esmble by averaging

Two stages coordinate regression:

(i) Coarse localization,

crop to 512×512,

(ii) Fine-grained localization.

VoxelCloud TransUNet-like architecture

(i) Remove black background

(ii) Pad and resize to 512×512

(iii) Default Data Augmentation +

Blur + JPEG compression +

GaussNoise + Coarse Dropout

Ensemble the predictions

of 30 models train with

different hyper-parameters

Binary segmentation the

fovea centered circle.

Using the sum of

binary cross-entropy loss,

SoftDice loss, SSIM loss,

IOU loss and L1 loss

to supervise

EyeStar

Poposed Two-Stage

Self-Adaptive

localization Architecture

(TSSAA)

(i) Resize to 998×998

(ii) Crop to 896×896

(iii) Resize to 224×224

(iiii) Default data augmentation

Two stages heatmap prediction:

(i) Coarse heatmap prediction,

crop to multi-scale ROI,

(ii) Fine-grained localization fusing

multi-scale ROI and

coarse-level features

HZL
UNet with

EfficientNet Backbone

Fundus: Resize to 1024×1024

OCT: Resize to 1024×1024

Default Data Augmentation

Pick 5 best models on 5

different validation folds.

Ensemble the results

by taking the average.

A multi-task UNet

to jointly learn glaucoma grading,

OD/OC segmentation

and fovea localization.

Recurrently run the

model for coarse-to-fine

localization

MedIPBIT

ResNet50 for coarse

localization

ResNet101 for Fine-grained

localization

Resize to 512×512

Three stages coordinate regression:

(i) Coarse localization, crop to ROI

(ii) Sequential two-stage

Fine-grained localization.

IBME
UNet with EfficientNetB5

backbone

(i) Padding to 2000×2992

(ii) Default Data Augmentation

End-to-end heatmap prediction

with maximization likelihood

for the localization

WZMedTech

HDRNet (Xie et al. (2020))

for the first

and second stage

ResNet50 for the third stage

(i) Center crop to 1920×1920

(ii) Resize to 224×224

(iii) Default Data Augmentation

Three stages coordinate regression,

predicted ROI of last

stage is cropped as

the input of the next stage

DIAGNOS-ETS Double stacked W-Net

(i) Resize to 512×512

(ii) Default data augmentation +

Color Normalization

4-fold temperature ensemble
End-to-end binary segmentation

the fovea centered circle

MedICAL

ResNet50 for coordinate

regression branch

EfficientNet-B0 for heatmap

predication branch

(i) Pick G channel of RGB image

(ii) Histogram equalization

(iii) Default data augmentation

Ensemble the results of

heatmap branch and

coordinate regression branch.

If Euclidean distance of

them larger than 30,

take the regression result.

If else, take the average of

two results

Two stages: (i) Coarse OD/Macular

segmentation, crop ROI to

128×128 and 256×256

(ii) Feed 128×128 patches and

256×256 patches

to a heatmap predication

network and coordinate regression

network respectively,

fuse the results of two branches

for the final predication

FATRI-AI YOLOv5s (Redmon et al. (2016))

(i) Crop black background

(ii) Default data augmentation

+ Mosaic (Chen et al. (2020))

+ Cutout

End-to-end macular

region detection,

macular region is generated by

a 160×160 square

centered on fovea location
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Table 10: Summary of the OD/OC segmentation methods in the GAMMA Challenge

Team Architecture Preprocessing Ensemble Method

SmartDSP (He et al. (2022))

DeepLabv3 with ResNet34

encoder for coarse

segmentation DeepLabv3 with

EfficientNet-b2 encoder for

Fine-grained segmentation

(i) Crop to 512×512 centered

on the highest brightness point

(ii) Default Data Augmentation

2-fold ensemble by averaging

Two stages: (i) Coarse OD

segmentation, cropping

(ii) Fine-grained OD/OC segmentation

VoxelCloud

TransUNet-like architecture

for coarse segmentation

CENet, TransUNet and Segtran

for Fine-grained segmentation

(i) Resize to 512×512

(ii) Default data augmentation

5-fold ensemble by

averaging for coarse segmentation

Ensemble the predictions of

five folds, three networks and

two kinds of input by

averaging for Fine-grained

segmentation

Two stages: (i) Coarse OD

segmentation taking blood vessel

mask concatenated fundus

image as input, cropping

(ii) Fine-grained OD/OC segmentation

taking cropped patches

and polar transformed

patches as inputs.

Model supervised by

BCE loss + Dice loss

EyeStar
Segtran (Li et al. (2021)) with

EfficientNet-B4 backbone

(i) Crop to 576×576 disc

region by

MNet DeepCDR (Fu et al. (2018a))

(ii) Resize to 288×288

(iii) Default data augmentation

Two stages: (i) Coarse OD

segmentation using

CNN, cropping

(ii) Fine-grained OD/OC segmentation

using Segtran

HZL
UNet with

EfficientNet Backbone

Fundus: Resize to 1024×1024

OCT: Resize to 1024×1024

Default Data Augmentation

Pick 5 best models on 5

different validation folds.

Ensemble the results

by taking the average.

A multi-task UNet

to jointly learn glaucoma grading,

OD/OC segmentation

and fovea localization.

FAM (Huang et al. (2021)) is

adopted for

the better segmentation

MedIPBIT

CNN-Transformer Mixed UNet

CNN backbone implemented

by ResNet34

Resize to 512×512

Two stages: (i) Coarse OD

segmentation, cropping

(ii) Fine-grained OC segmentation

IBME

UNet with

EfficientNetB3 backbone

for OC center localization

UNet with

EfficientNetB6 backbone

for Fine-grained segmentation

Default data augmentation

Two stages: (i) OC center

localization, crop ROI

to 512×512

(ii) Fine-grained OD/OC segmentation

WZMedTech

DeepLabV3 for

coarse segmentation

TransUNet for

Fine-grained segmentation

(i) Center crop to 1920×1920

(ii) Default data augmentation

In the Fine-grained stage,

ensemble the models supervised

by cross-entropy loss +

boundary loss + dice loss

and that supervided by focal loss +

dice loss by taking the average

Two stages: (i) Coarse OD

segmentation, crop ROI

to 512×512

(ii) Fine-grained OD/OC segmentation

DIAGNOS-ETS Double stacked W-Net

(i) Resize to 512×512

(ii) Default data augmentation +

Color normalization

In coarse OD segmentation:

4-fold ensemble by taking average

In Fine-grained OD/OC segmentation:

4-fold temperature ensemble

Two stages: (i) Coarse OD

segmentation, crop ROI

to 512×512

(ii) Fine-grained OD/OC segmentation

MedICAL
UNet with EfficientNet-B4

backbone

(i) Resize to 512×512

(ii) Default data augmentation

Three stages: (i) Coarse OD/Macular

segmentation, crop OD ROI

to 448×448

(ii) Fine-grained OD/OC segmentation,

crop OC ROI TO 256×256

(iii) Fine-grained OC segmentation

FATRI-AI
YOLOv5s for coarse segmentation

HRNet for Fine-grained segmentation

(i) Resize to 608×608

(ii) Default data augmentation

+ Mosaic (Chen et al. (2020))

+ Cutout

Two stages: (i) Coarse OD

segmentation, crop ROI

to 512×512

(ii) Fine-grained OD/OC segmentation.

Final results will be

smoothed as ellipses
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Figure 7: An illustration of TSSAA proposed by EyeStar for fovea localization. TSSAA first

predicts a coarse heatmap in the coarse stage. Then multi-scale ROI is cropped from the raw

image as the input of the subsequent refine stage. In the refine stage, the coarse-level features

will also be aligned and fused again for the final prediction.

Figure 8: The coarse stage of OD/OC segmentation model proposed by VoxelCloud. The

blood vessel segmentation results predicted from a pre-trained network will be concatenated

as the input for the coarse OD segmentation
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