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Abstract
Cloud observations and characterization are crucial owing to their influence
on energy balance, climate, and weather. Their particular effects on radiation
vary depending on different cloud parameters, such as cloud base or top height,
water content, and cloud optical thickness, all of them closely related to the
specific cloud type. Cloud classification therefore becomes a crucial task in mete-
orology, although it remains challenging for weather services worldwide owing
to the intensive associated labor and cost. In this study we introduce a new
low-cost method for automating cloud classification based on a combination
of ground-based global horizontal irradiance (GHI) measurements, a clear-sky
model, and machine learning. Based on the hypothesis that different cloud
types have their own GHI signatures, we trained different supervised learn-
ing algorithms using GHI data manually labeled by meteorological observers
from time-synchronized all-sky images. Multiple time windows were extracted
from each GHI series, with eight features defined in each case to characterize
the sequence. The best outcome was achieved using an XGBoost model on fea-
tures extracted on time windows of 33 min, obtaining an accuracy of 0.88 and a
Cohen’s kappa of 0.84 in a held-out test set. The development presented in this
study has the ability to provide low-cost cloud classification from ground-based
observations, which is a challenge for weather services worldwide owing to
intensive labor and cost.
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all-sky images, cloud classification, ground-based measurements, solar irradiance, supervised
learning algorithms

1 INTRODUCTION

Clouds exert a significant influence on Earth’s energy
balance, influencing both incoming solar radiation and
outgoing long-wave radiation (Stephens & L’Ecuyer, 2015).
Equilibrium is pivotal for Earth’s climate and weather
dynamics. A critical parameter within this context is
global horizontal irradiance (GHI), denoting the total

short-wave radiation received from above by a surface
horizontal to the ground. The role of clouds in solar irra-
diance modulation involves processes such as reflection,
absorption, and scattering of radiation by cloud particles.
Their impact on GHI is intricately linked to factors such
as volume, shape, thickness, and composition (Deneke
et al., 2008; Kokhanovsky, 2004; Ododo et al., 1996; Orsini
et al., 2002). Furthermore, the effect of a solitary cloud
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on solar irradiance contrasts with that of multiple clouds
or overcast skies. This is because the decrease in irradi-
ance depends on whether the sun is obscured by clouds
and on the extent of cloud coverage. If a cloud is posi-
tioned between the sun and the observer, it can block the
sun, leading to a decrease in direct normal irradiance.
However, under cloudy conditions, diffuse irradiance can
increase because of the reflection of solar irradiance from
the underside of clouds and the scattering of direct irradi-
ance by cloud particles (Tapakis & Charalambides, 2013).
Therefore, the presence and movement of clouds can cause
large short-term variations in the surface GHI, which can
have profound implications, particularly in fields such as
solar energy, affecting energy production, especially when
interrupted for short periods (Abdellatif et al., 2015).

The World Meteorological Organization (WMO) classi-
fies clouds into 10 different types, using a classification sys-
tem based on genera, species, and varieties (WMO, 2017).
Clouds are organized into 10 primary categories, referred
to as genera, with each observed cloud belonging to a sin-
gle genus. Apart from this classification, the WMO further
categorizes clouds based on their altitude, dividing the tro-
posphere into three vertical levels: high, middle, and low.
The determination of each level is based on the vertical
height range at which specific cloud types are typically
observed. These levels are identified as high-level clouds
(cirrus, Ci; cirrocumulus, Cc; cirrostratus, Cs), mid-level
clouds (altocumulus, Ac; altostratus, As; nimbostratus,
Ns), and low-level clouds (stratocumulus, Sc; stratus, St;
cumulus, Cu; cumulonimbus, Cb).

Cloud classification can contribute to different fields.
It can provide valuable information for activities signifi-
cantly affected by weather and cloud conditions, such as
aviation, agricultural, maritime navigation, and warning
systems due to potential weather hazards. On the other
hand, cloud classification can contribute to several practi-
cal applications, such as data collection for meteorological
agencies, photovoltaic power prediction, and weather
forecasting (Duchon & O’Malley, 1999; Li et al., 2023; Zhu
et al., 2022).

The accurate classification of clouds is crucial for pre-
dicting their motion and how they affect the amount of
solar radiation that passes through them. First, different
cloud types obstruct varying amounts of solar radiation.
This depends on the type of cloud and can be affected
by their size and opacity (Matuszko, 2012). In addition,
ice crystals and water droplets have different effects on
the absorption and scattering of solar radiation (Sun &
Shine, 1994). Second, because different types of clouds
are located at different altitudes, they can be influenced
by different air currents, causing them to move in vary-
ing directions at different speeds (Zhang et al., 2005).
Finally, weather conditions at different altitudes can affect

cloud development over time, potentially leading to rain-
fall (Tapakis & Charalambides, 2013).

Over the past few decades, surface cloud information
has been recorded through human observations, where
the amount of clouds covering the sky (octas) and the
types of clouds have been distinguished based on their
appearance (WMO, 2017). However, this data collection
method is expensive and subjective (Luiz et al., 2018;
Martínez-Chico et al., 2011; Utrillas et al., 2022). There-
fore, many researchers have reported more objective
approaches for estimating the amount of clouds in the
sky using different instruments. Some of these alterna-
tives use downward long-wave radiation along with other
meteorological parameters acquired at the surface (Dürr
& Philipona, 2004; Marty & Philipona, 2000). Other stud-
ies have investigated the cloud cover conditions based on
satellite data (Escrig et al., 2013; Jang et al., 2016; Liang &
Yuan, 2016; Nespoli et al., 2022; Perez et al., 2002) and/or
on all-sky camera images (Kassianov et al., 2005; Long
et al., 2006; Pfister et al., 2003; Sabburg & Long, 2004).
Given the difficulties associated with visual classification,
particularly in terms of subjectivity and cost, researchers
have sought to develop more objective, cost-effective
methodologies for cloud detection.

Duchon and O’Malley (1999), on the other hand, pro-
posed a method to discriminate the cloud type based on
a pyranometer in areas with restricted sky observations.
They used irradiance data and performed statistical analy-
ses to determine the cloud types. However, their approach
showed agreement with human observations only 45%
of the time. These differences were mainly attributed to
the pyranometer’s focus on clouds crossing the sun’s path
and its susceptibility to aerosol interference. Our work is
inspired by their approach and serves as a basis for the
development of our own methodology.

Considerable progress has been made in the devel-
opment of machine-learning (ML) methodologies and
practical applications in Earth science (e.g., crop disease
detection, air pollution estimation, and precipitation fore-
casting; Lary et al., 2018; Zhou et al., 2021). These types of
models are flexible enough to be applied in different sce-
narios, as they are able to automatically learn patterns and
relationships between their inputs and outputs. Several
researchers have used these techniques in tasks such as
clear-sky detection (Hollstein et al., 2016; Liu et al., 2021;
Mommert, 2020) or to detect different cloud conditions
(Heinle et al., 2010; Jang et al., 2016; Lee et al., 2004;
Taravat et al., 2015). Taravat et al. (2015), for instance,
developed a method that automatically classifies clouds
in ground-based whole-sky images using neural networks
and support vector machines. The pixel values of the red,
green, and blue bands in the images served as inputs for
the models, and the outputs provided pixels classified in
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terms of cloud coverage or others (cloud-free pixels and
sun). Both models achieved an accuracy of around 95%
in detecting clouds in a given region of an image. These
studies have shown the great potential of ML in identify-
ing periods of clear and cloudy skies. However, working
with all-sky camera images presents its own challenges in
terms of computational and complexity cost.

In this article we introduce a novel ML-based classi-
fication approach for discriminating different cloud types
using ground-based GHI observations and a clear-sky
model that estimates the GHI under clear skies (McClear
model; Lefèvre et al., 2013). The labels for training the
supervised models were derived from the classification
of all-sky images conducted by meteorological observers
using the classes proposed by Loyber (2022), which was
based on the classification delineated by Liu et al. (2019).
This approach aims to enhance the accuracy and efficiency
of cloud classification, contributing to a more robust
understanding of atmospheric conditions based on GHI
data and clear-sky modeling. This is the first ML devel-
opment that uses this specific data to classify cloudiness,
according to our literature review.

The remainder of the article is organized as follows:
Section 2 summarizes our data acquisition and annotation
process and the design and implementation process of our
cloud classification approach, including details about the
GHI-based features and the ML models. Results are pre-
sented and discussed in detail in Sections 3 and 4 respec-
tively. Lastly, conclusions are summarized in Section 5.

2 MATERIALS AND METHODS

A schematic representation of our experimental design
is shown in Figure 1. Labels were assigned to determine
the class in each all-sky image at a specific datetime
through visual assessment by meteorological observers
(Section 2.1). Simultaneously, a pyranometer measure-
ment window was extracted to obtain the relevant GHI
features (Section 2.3). We performed experiments with
time windows ranging from 9 to 41 min, with increments
of 2 min in window size. The resulting dataset was subse-
quently partitioned into training, validation, and testing
sets as detailed in Section 2.2. We developed various ML
classification models to discern among different cloud
classes (Section 2.4) that correspond to six groups of dif-
ferent cloud types, following the classification proposed
by Liu et al. (2019) and Loyber (2022): (1) Ac and Cc; (2)
Ci and Cs; (3) clear sky (Clear-sky); (4) Cb and Ns; (5) Cu;
(6) Sc, St, and As (see Figure 2). From here on, these classes
will be referred to as “not mixed”. Although “Clear-sky” is
not technically a cloud class, but rather a condition of the
sky, we refer to all categories collectively as “cloud classes”

F I G U R E 1 Experimental design. Manual labeling was
performed by meteorological observers from the all-sky images.
Features were extracted from pyranometer (global horizontal
irradiance, GHI) measurements data at the same datetime. Data
partitioning (training, validation, test) was applied to train,
calibrate, and evaluate the respective machine-learning models.
[Colour figure can be viewed at wileyonlinelibrary.com]

to ensure consistency and ease of comprehension through-
out the article. On the other hand, cases with cloud types
belonging to more than one group were labeled as “mixed”.

2.1 Data acquisition and manual
labeling

The data used in this study were retrospectively col-
lected from Earth-based observation made in Villa Martelli
(34.58◦S, 58.48◦W, 25 m a.s.l.) in 2019. Villa Martelli
is situated in the northern zone of Greater Buenos
Aires, a province located in the central-eastern region of
Argentina. One-minute GHI data were obtained using a
Kipp & Zonen CMP-21 pyranometer in the total range
(285–2800 nm) belonging to the Saver-Net Argentine net-
work (Orte et al., 2022). These instruments typically report
an uncertainty of ±2% for daily totals (OTT HydroMet
2023). The measurements have exhaustive quality control,
through visual inspection of the data series and graphi-
cal tools, in order to meet the criteria established by the
Baseline Surface Radiation Network for GHI (Ohmura
et al., 1998). The defective or shadowed periods were
removed from the data series.

At the same time points, all-sky images were recorded
using a SONA 201D V6.1 camera (Sieltec Canarias
S.L.). These cameras, equipped with an array of sensors
and a fisheye lens, enable monitoring sections of the

http://wileyonlinelibrary.com
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F I G U R E 2 Examples of all-sky images used for producing
manual cloud-type labels for our experiments. Cb–Ns:
cumulonimbus and nimbostratus; Ac–Cc: altocumulus and
cirrocumulus; Cu: cumulus; Sc–St–As: stratocumulus, stratus, and
altocumulus; Ci–Cs: cirrus and cirrostratus; Clear-sky, clear sky.
Notice that the class “mixed” corresponds to those images
exhibiting a combination of different cloud class (the example
exhibits Ac and St, which belong to Ac–Cc and Sc–St–As classes).
[Colour figure can be viewed at wileyonlinelibrary.com]

atmosphere through a narrow field of view. Thanks to
the resulting panoramic view of the sky-dome, they can
therefore capture, store, and process images of the celes-
tial vault, covering a maximum angle of around 180◦
field of view.

A total of 7,025 images were collected for the cor-
responding time period and then manually labeled by
meteorological observers from the Argentine Servicio
Meteorológico Nacional (https://www.smn.gob.ar/), who
assigned different cloud classes (Figure 2). All meteo-
rological observers were trained based on the compe-
tencies of Annex 5.A of the WMO Guide to Instruments
and Methods of Observation Vol. 5 (WMO, 2018). The
labeling process involved several iterations until achiev-
ing sets verifiable by all persons involved. Addition-
ally, there were “administrator” profiles overseeing the
task and simultaneously validating the accuracy of the
classifications. The manual labeling is comprehensively
explained in Loyber (2022). As the model was trained
considering the six not-mixed classes, mixed cases were
clustered and a specific test was conducted as outlined
in Section 2.5. Since the Cb–Ns class had very few sam-
ples, we decided to augment this subset by retrospec-
tively collecting new cases into validation/test partitions

under the assumption that lightning only occurs in the
presence of Cb clouds, following the WMO cloud iden-
tification guide (Holzworth, 2023; Kaplan & Lau, 2021;
Rawlins, 1982; WMO, 2017).

The detection of lightning was determined using the
information from the electrical activity records obtained
from the World Wide Lightning Location Network, a net-
work of very low frequency (VLF) radio lightning sensors
operated by the University of Washington in Seattle (USA)
(Holzworth, 2023). Most ground-based observations in the
3–30 kHz VLF band are dominated by impulsive signals
from lightning discharges called “sferics”. Significant radi-
ated electromagnetic power exists from a few hertz to
several hundred megahertz, with the bulk of the energy
radiated at VLF.

Hence, we examined instances where lightning was
detected within a radius of 14 km around the site, which
is approximately the same perspective achievable with
an all-sky camera, and finally added these cases to
the Cb–Ns class.

2.2 Data preparation

We split our dataset into 80% and 20% for training and
testing respectively. The 80% saved for training was fur-
ther divided into 80% for training the models and 20%
for calibrating their hyperparameters (validation set). To
guarantee the independence and identical distribution of
samples, the sets were produced using a season-based
approach. Specifically, we divided the data year into four
groups corresponding to the beginning standard dates
of equinoxes and solstices for the Southern Hemisphere,
which occur around December 21 for summer, March 21
for autumn, June 21 for winter, and September 21 for
spring). The same proportion of samples from each sea-
son was preserved in the training, validation, and test
sets. Each seasonal set was treated independently, and
the samples were separated into training, validation, and
testing sets, considering that there were no samples close
together in time. Subsequently, to minimize temporal cor-
relations in samples within the validation and test sets, we
removed those samples that fell within a±3 hr time-frame.
Finally, for the remaining validation and test samples, the
cloud-type labels were reviewed to ensure their accuracy.
All these steps helped us avoid any biases or patterns in
the data that could affect the model’s performance. As a
result, we obtained training, validation, and test sets with
3,031, 161 and 161 samples respectively. Figure 3 illustrates
the different types of clouds in each data partition, and
Table 1 lists the number of samples for each cloud type in
the dataset.

http://wileyonlinelibrary.com
https://www.smn.gob.ar/
https://www.smn.gob.ar/
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F I G U R E 3 Distribution of samples for each cloud class in
the training, validation and test sets. Ac–Cc: altocumulus and
cirrocumulus; Cb–Ns: cumulonimbus and nimbostratus; Ci–Cs:
cirrus and cirrostratus; Cu: cumulus; Sc–St–As: stratocumulus,
stratus, and altocumulus. [Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 1 Sample numbers of six cloud types in the dataset.

Cloud type No. of samples

Clear-sky 931

Ci–Cs 647

Ac–Cc 558

Cu 458

Sc–St–As 373

Cb–Ns 386

Abbreviations: Ac–Cc, altocumulus and cirrocumulus; Cb–Ns,
cumulonimbus and nimbostratus; Ci–Cs, cirrus and cirrostratus; Cu,
cumulus; Sc–St–As, stratocumulus, stratus, and altocumulus.

2.3 Feature extraction

Images classified by the observers were matched with the
corresponding GHI time stamp. A time window Δt was
extracted from each GHI data series, centered around
the specific time stamp of the corresponding image, to
characterize the period of irradiance associated with the
observed cloud. The clear-sky GHI (GHICS) was also
calculated within the time window using the McClear
model (Lefèvre et al., 2013), which was evaluated in pre-
vious research at this site (Lusi et al., 2023). We evaluated
different features, all of which were selected consider-
ing the research hypothesis, which is that different cloud
types introduce characteristic short-term variability in
GHI. To mitigate potential redundancies in data, the

combination of features was determined by analyzing
their Pearson correlation in the training set, as suggested
by Assegie et al. (2021). This procedure allows identify-
ing and removing redundant features that were highly
correlated, thereby reducing the dimensionality of the
dataset. In instances in which a high correlation was
detected, we conducted an in-depth examination of the
characteristics and selected the most representative fea-
tures. This made the model more efficient, potentially
improved its performance, and mitigated the risk of over-
fitting by preventing the model from overemphasizing
the importance of these features. Moreover, this process
resulted in a model that was easier to interpret, owing
to the reduced number of features. Notably, all decisions
affecting the model were made using only the training
set to avoid data leakage, ensuring that no information
from the test set was inadvertently introduced into the
model. This comprehensive approach effectively mitigated
potential redundancies in our data. Finally, eight features
were extracted:

1. Standard deviation of the variability index, std(VI).
2. Root-mean-square deviation (RMSD) between GHI and

GHICS.
3. Standard deviation of the modified clearness index,

std
(

k∗
t
)
.

4. Mean value of the modified clearness index, k∗
t .

5. Maximum value of the modified clearness index,
max

(
k∗

t
)
.

6. Skewness index of the modified clearness index,
skew

(
k∗

t
)
.

7. Kurtosis indices of the modified clearness index,
kurt

(
k∗

t
)
.

8. Average variability 𝜎.

All features implicitly incorporate adjustments relative
to the clear-sky model or extraterrestrial irradiance pat-
tern. They were standardized based on their own mean
and standard deviation values to account for differences in
their ranges. Statistics for standardizations were obtained
from the training set to avoid data leakage. Each feature
is explained in detail in the following and summarized in
Table A1 of the Appendix.

2.3.1 Standard deviation of variability index

The variability index (VI) is the normalized line length of
irradiance, as presented in (Stein et al., 2012). It is a simple
measure of irradiance variability (unitless) over a period of
time. VI is calculated following Equation (1), where GHI
and GHICS are vectors of length n of observed and clearisky

http://wileyonlinelibrary.com


6 LUSI et al.

(modeled) GHI averaged at some time interval in minutes
Δt, respectively. The VI is calculated for each minute over
Δt and then the standard deviation is applied:

VI =
∑n

k=2

√
(GHIk − GHIk−1)2 + Δt2

∑n
k=2

√(
GHICSk − GHICSk−1

)2 + Δt2
. (1)

2.3.2 RMSD between GHI and GHICS

The RMSD (W⋅m−2) measures the dispersion of the devi-
ation. The RMSD feature used here is an analogy of the
root-mean-square error commonly used to determine sta-
tistical errors but calculated between the GHI measure-
ment and model for clear-sky conditions. In other words,
it indicates how far GHI values fall from GHICS values. It
is calculated as

RMSD =

√∑n
i=1(GHIi − GHIcs)2

n
, (2)

where the n value is the length of the time interval
considered.

2.3.3 Standard deviation, mean
and maximum of the modified clearness
index k∗

t

The clearness index kt is the ratio between the GHI on the
surface of the Earth and extraterrestrial radiation at the
top layer of the atmosphere. It represents the proportion
of extraterrestrial solar radiation that reaches the surface.
The GHI is influenced by clouds, which modulate the
amount of solar radiation reaching the surface. By ana-
lyzing these variations, we aim to identify different cloud
types and their impacts. Perez et al. (1990) modified kt
to avoid dependence on solar elevation and used it as a
more reliable indicator of sky conditions, known as the
modified clearness index k∗

t . This index is calculated from
the relationship between kt and the optical air mass m
(Kasten & Young, 1989):

k∗
t = kt

1.031 × exp
[

−1.4
0.9+(9.4∕m)

]
+ 0.1

. (3)

The k∗
t (unitless) for each minute of measurement

within the time interval is calculated, and then the period
is represented by the standard deviation, mean, and maxi-
mum value.

2.3.4 Skewness and kurtosis indices of the
modified clearness index k∗

t

Skewness and kurtosis (unitless) are two statistical mea-
sures used to describe the shape and distribution of a
dataset (Garcia-Gutierrez et al., 2022). Skewness is a mea-
sure of the asymmetry of the data distribution, indicating
whether the distribution is symmetric or skewed to one
side. Hence, if the skewness value is close to zero then the
distribution is approximately symmetric. Kurtosis, on the
other hand, is a measure of the concentration of data in the
tail of a distribution, indicating whether the distribution
has a concentration of data at the center or the tail. Thus, a
kurtosis value close to zero indicates that the distribution
has a concentration of data similar to the normal distribu-
tion. These indices were calculated in the k∗

t time series to
characterize the period.

2.3.5 Average variability

The variability metric for a single location is defined as
the standard deviation of the change in k∗

t values, within a
4-min moving window:

𝜎 = std
(
Δk∗

t
)
. (4)

This variability is directly proportional to the change
in the clear-sky index using the specified time interval Δt
(Hoff & Perez, 2010; Perez & Hoff, 2013). Once the variabil-
ity metric, or sigma 𝜎, was calculated in minute intervals,
an average was computed.

2.4 ML methods

To understand the influence of different ML algorithms
on the results, we evaluated a series of popular super-
vised learning methods for multiclass classification. In
particular, we studied one-vs.-rest (Whitaker et al., 2021)
and softmax logistic regression (Deng et al., 2023) and
random forest (Breiman, 2001) and XGBoost (Chen &
Guestrin, 2016). We chose these approaches owing to their
linear and their nonlinear natures respectively, which
allows us to analyze the influence on these assumptions
in the results.

All models were trained, calibrated, and evaluated
using the same training, validation and test partitions,
obtained as explained in Section 2.2. To optimize their
individual hyperparameters, we used random search on
the validation set, and the optimal configuration was then
used for testing. We focused on optimizing the model
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T A B L E 2 Parameters setting to determine the optimal hyperparameters for the models.

Model Hyperparameter Threshold

One-vs.-rest logistic
regression

C −5 −4 −3 −2 −1 0 1 2 3 4

Penalty l1 l2

Softmax regression C −3 −2 −1 0 1 2 3 4 5

Random forest n_estimator 5 10 25 50 100 200

max_depth 3 5 7 9 11 None

XGBoost n_estimator 100 150 200

max_depth 3 4 5 7

learning_rate 0.01 0.03 0.1

by using a held-out test set to ensure its performance
and generalizability. It is worth noting that the soft-
max loss function was utilized for XGBoost, and all
configurations explored for the models are summarized
in Table 2.

2.5 Evaluation metrics

Models were evaluated in terms of accuracy, Cohen’s
kappa, and F1 score. Accuracy is a metric for mul-
ticlass classification defined as the number of correct
predictions divided by the total number of predictions.
Cohen’s kappa score is also used for evaluating multi-
class classifiers, and it measures the numerical rating of
the degree of agreement between a detection result and
a ground truth labeling. Additionally, F1 score, another
metric commonly used for evaluating binary classifiers,
is robust enough to be applied in datasets with imbal-
anced classes. In this context, we applied it in each class
individually, rather than providing a macro average. This
approach is effective in handling multiclass problems,
offering insights into the performance of the model across
different classes. We also included precision and recall
values on these analyses, to comprehensively understand
the degree of false positives and negatives when detecting
individual classes.

On the other hand, we utilized a confusion matrix to
provide a detailed analysis of the predictive capabilities of
the model by comparing the predicted labels against the
ground-truth labels.

The discrimination of mixed clouds was conducted
by means of an entropy analysis to discriminate between
mixed and non-mixed clouds using receiver operating
characteristic (ROC) analysis. The ROC curves display the
sensitivity or true-positive rate versus the false-positive
rate (or 1 − Specificity) and show a possible trade-off

between sensitivity and specificity. The ideal ROC curve
has an area under the curve (AUC) value of 1.

3 RESULTS

3.1 Models’ performance with respect
to 𝚫t in the test set

In order to determine the optimal Δt, an extensive range
of widths were tested for characterizing cloudiness. We
trained our algorithm using Δt ranging from 9 to 41 min,
with a 2 min increment (i.e., we tested 17 widths for each
model). These ranges were chosen because a window
shorter than 9 min provides a point-in-time measurement,
particularly if a single cloud persists between the pyra-
nometer and the direct beam within the window width.
Conversely, a much longer window, such as 50 min, is also
inappropriate because it may encompass different types of
cloudiness (Duchon & O’Malley, 1999). Figure 4 shows the
accuracy and Cohen’s kappa values obtained for each Δt
within the test set. It is observed that the performance of all
models showed enhancement with increasingΔt until∼31
or 33 min, with the nonlinear models demonstrating supe-
rior scores. In particular, the XGBoost model obtained its
best performance with a Δt of 33 min, achieving an accu-
racy of 0.88 and Cohen’s kappa of 0.84. On the other hand,
the random forest model also performed optimally with a
Δt of 19 min, attaining an accuracy of 0.87 and Cohen’s
kappa of 0.83.

3.2 Model performance with respect
to cloud type in the test set

Figure 5 displays the F1 score achieved for detecting each
specific cloud type by the random forest and XGBoost
models, using different Δt. It can be observed that for
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F I G U R E 4 Accuracy
and Cohen’s kappa for the
logistic regression (LR)
one-vs.-rest (OvR), LR softmax,
random forest (RF), and
XGBoost models in each time
interval in the test set. [Colour
figure can be viewed at
wileyonlinelibrary.com]

both models the performance of the clear-sky class
remained largely unaffected by varying theΔt widths. This
consistent pattern is also evident in the Cb–Ns and Cs–Ci
classes, with scores of around 0.9 and 0.8 respectively.
Notably, within the Cb–Ns class, random forest exhibited
a more consistent and higher level of performance. Fur-
thermore, for the Ac–Cc class we obtained F1 scores close
to 0.6 with both models. The Cu class showed the best F1
score at 19 min in the random forest model. In contrast,
the XGBoost model exhibited a different behavior, with
the performance improving as the Δt increased, reaching
its maximum at 31 min. Conversely, the Sc–St–As class
started with a low F1 score and decreased notably as the
Δt expanded.

3.3 Top-performing model analysis
in the test set

The XGBoost model outperformed all other approaches in
the validation set, with its best configuration being the one

with 200 estimators and a Δt of 33 min. Hence, we evalu-
ated this particular model on the test set. Figure 6 shows
the resulting confusion matrix, and Table 3 presents the
evaluation metrics obtained for each individual cloud type.
Notice that the normalized (i, 𝑗) values in the matrix rep-
resent the proportion of instances of a class i classified as
j with respect to the total number of samples. Although
these values do not directly correspond to recall or preci-
sion, the values on the diagonal do represent recall for each
class, as they reflect the proportion of true positives cor-
rectly classified. We found that the clear sky was notably
predicted, showing an F1 score of 99%. The Cb–Ns class
also performed well, with an F1 score of 97%. The Ac–Cc,
and Ci–Cs classes were classified with an accuracy of 70%
and 87% respectively, and F1 scores of 68% and 88% respec-
tively. Approximately 82% of the predictions in the Cu class
were aligned with the ground-truth label. On the other
hand, the model faced challenges in accurately classify-
ing the Sc–St–As class, achieving a 64% accuracy rate and
F1 score of 67%. The model often confused this class with
Ac–Cc, and Cu, as observed in the confusion matrix.

http://wileyonlinelibrary.com
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F I G U R E 5 F1 score for
random forest (RF) and
XGBoost in different time
intervals in the test set. Ac,
altocumulus; As, altostratus;
Cb, cumulonimbus;
Cc, cirrocumulus; Ci, cirrus;
Cs, cirrostratus; Cu, cumulus;
Ns, nimbostratus;
Sc, stratocumulus; St, stratus.
[Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 7 presents the feature importance of XGBoost.
The analysis revealed that the most significant importance
was associated with the RMSD, the average variability 𝜎

and the standard deviation of the k∗
t .

3.4 Managing multiple cloud classes

To demonstrate the capability of our algorithm in distin-
guishing scenarios in which multiple types of cloud classes
coexist, we conducted an uncertainty analysis by calculat-
ing the Shannon entropy of the output probabilities. Our
hypothesis was that the model should exhibit high uncer-
tainty (and therefore high entropy) in those cases labeled
as mixed cloud, as it should not be able to discriminate a
specific class over the others. To confirm or discard this
first, we computed the entropy on images labeled as mixed

class or not and evaluated the resulting value as a score for
discriminating the mixed class from not-mixed. Figure 8
shows the resulting ROC curve and the boxplots of the
entropies between not-mixed and mixed classes.

The ROC curve presented an AUC of 0.83, whereas the
boxplot reflects a notable difference between the entropies
of the not-mixed and mixed classes.

4 DISCUSSION

In this study we presented a novel ML model for cloud
classification based on GHI features. This was rendered
possible thanks to the temporal matching of all-sky images
with the measurements collected using the pyranometer,
which allows the manual labels of the cloud types to be
directly associated with the signals. Despite the potential

http://wileyonlinelibrary.com
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F I G U R E 6 Confusion
matrix of the predicted value
over ground truth for XGBoost
on the test set. Ac, altocumulus;
As, altostratus; Cb,
cumulonimbus; Cc,
cirrocumulus; Ci, cirrus; Cs,
cirrostratus; Cu, cumulus; Ns,
nimbostratus;
Sc, stratocumulus; St, stratus.
[Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 3 Precision, recall, and F1 score achieved by
XGBoost on the test set.

Category Precision Recall F1

Clear-sky 1 0.98 0.99

Ci–Cs 0.89 0.87 0.88

Ac–Cc 0.67 0.7 0.68

Cu 0.75 0.82 0.78

Sc–St–As 0.7 0.64 0.67

Cb–Ns 0.94 1 0.97

Abbreviations: Ac, altocumulus; As, altostratus; Cb, cumulonimbus; Cc,
cirrocumulus; Ci, cirrus; Cs, cirrostratus; Cu, cumulus; Ns, nimbostratus;
Sc, stratocumulus; St, stratus.

limitations associated with the subjective nature of human
observations and variations in interpretation during the
labeling process, the results demonstrate that our model
is capable of predicting cloud behavior comparable to that
of a meteorological observer from a sky image. With an
achievement of 0.88 accuracy, our XGBoost model relies on
a cost-effective, low-maintenance pyranometer signal and
is fully automatic.

All models considered showed variations in perfor-
mance depending on the size of the time window consid-
ered for analysis (see Figure 4). Although the persistence
of specific cloud types in the sky, observed from a par-
ticular geographical location, is inherently variable owing

to factors such as cloud type, atmospheric conditions,
and wind, determining a suitable time window was nec-
essary for this study. Various researchers, such as Reno
and Hansen (2016), opted for moving windows of 10 min,
whereas others, such as Duchon and O’Malley (1999),
chose a 21-min window. In our analysis, we explored
time periods ranging from 9 to 41 min and found the
best performance at 33 min. A trend in the performance
was observed when the time window was increased. It
also presented significant instability, which is mainly
attributed to the fluctuations of the Sc–St–As class in its
performance. This class was the most challenging to pre-
dict for the algorithm and its high unstable behavior in
both nonlinear models can be attributed to its status as
the most diverse class in the dataset. Notably, for the
well-performing classes (Clear-sky, Cb–Ns, Ci–Cs), vari-
ations in Δt did not significantly impact their F1 score
performance.

Experimentally, we observed that XGBoost and ran-
dom forest performed much better than the logistic
regression counterparts, with XGBoost exhibiting the
largest accuracy and Cohen’s kappa values in the vali-
dation and test sets. This superior performance can be
attributed to the complex nonlinear relationships within
the data being effectively captured by the ensemble
nature of tree-based models like XGBoost and random
forest, allowing for a more accurate representation of
the patterns. The literature supports our findings, with

http://wileyonlinelibrary.com
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F I G U R E 7 XGBoost
feature importance. [Colour
figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 8 (a) Receiver operating characteristic (ROC) curve illustrating the model’s discrimination performance between mixed and
not-mixed cloud scenarios with an area under the curve (AUC) value of 0.83. FPR: false-positive rate; TPR: true-positive rate. (b) Boxplot
showing the distribution of entropy values between mixed and not-mixed classes. [Colour figure can be viewed at wileyonlinelibrary.com]

various studies highlighting the effectiveness of XGBoost
in outperforming other models (Asselman et al., 2023,
Osman et al., 2021; Kaushik et al., 2023).

Once we confirmed XGBoost as the top ranked model,
we proceeded to evaluate it on the test set. Our results
showed the XGBoost outperformed other models in terms
of accuracy and Cohen’s kappa values, showing the agree-
ment between predicted and actual class labels beyond
what would occur by chance. The robustness of XGBoost
played a pivotal role in its success. Though the differences
with random forest may not be stark, the performance
superiority of XGBoost, especially in comparison with
logistic regression models, highlights its capacity to excel

in scenarios where nonlinear relationships and complex
patterns play a crucial role.

Regarding feature importance analysis, the RMSD
emerged as a crucial predictor, signifying those changes
in this feature substantially affected the model’s predic-
tions. In particular, its importance value was almost seven
times greater than the kurtosis of k∗

t , which represented
the lowest feature importance value. The higher impor-
tance of RMSD would lie in its direct measurement of
the high dispersion of GHI into the time window with
respect to the clear-sky GHI. High short-term variability
in GHI could be related to clouds with low horizontal
developments or broken clouds such as Cu, which may

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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attenuate and subsequently increase the GHI above the
GHICS (in cases of enhancement) in short periods of time
(on the order of minutes), which also depends on the ver-
tical development (Mol et al., 2023). Similarly, the 𝜎 and
standard deviation of the k∗

t also played significant roles,
with importance values of 17% and 15% respectively, giv-
ing less weight to extreme cases. Unlike RMSD, both these
features provide information about GHI variability relative
to the clear-sky model or extraterrestrial irradiance pattern
within the chosen time window. However, they assign less
weight to extreme cases than RMSD does. Combined with
the mean value of k∗

t , these features could offer valuable
information to determine GHI patterns related to differ-
ent cloud types. For example, clouds with low standard
deviation and low mean k∗

t could explain the presence of
homogeneous clouds with high horizontal extension with
a relatively low vertical development such as St.

When discriminating the results per individual cloud
class, we observed that the class with the highest confusion
rates was Sc–St–As (see Figure 6). Though Sc and St are
low-level clouds, As is characterized by being middle-level
cloud. Thus, this class includes diverse cloud formations
that manifest at different altitudes and displays distinct
visual patterns. For example, whereas Sc clouds are flat,
layered, and possess a smooth texture, the St clouds are rec-
ognized for their flat and grayish aspects, often spreading
across expansive portions of the sky. Therefore, the optical
properties among the three types included in this class are
different, leading to different patterns that can affect the
model’s ability to group them into a single class.

The differences between clouds within the same class
underscore the challenges in identifying features that
accurately represent them. In this study, we adopted the
classification from prior work; however, future research
should consider cloud grouping when defining classes to
mitigate such errors. One solution could be addressed by
relabeling the dataset and associating these types with
different classes. Moreover, the confusion between these
three cloud types and Cu clouds could stem from the dis-
tortion present in the all-sky images. Cu clouds exhibit
a heaped-up, puffy shape reminiscent of a cauliflower.
However, the fisheye view from an all-sky camera intro-
duces distortion and has systematic detection errors such
as misdetection of thin clouds, leading to the potential
misidentification of clouds during the labeling pro-
cess by meteorological observers (Calbó et al., 2005).
It is important to note that this distortion affects all
cloud types, but its effect is particularly pronounced for
cumuliform clouds. In addition, when labelling from a
two-dimensional all-sky image, meteorological observers
lose the three-dimensional perspective they would have
when determining cloud types through direct sky observa-
tion. This loss of perspective may hinder the identification

of cloud attributes such as height, which plays a key role
in determining the types of clouds. As anticipated, differ-
ent cloud types have distinct implications for the amount
of irradiance reaching the Earth’s surface. For instance,
low-level clouds such as Sc–St, owing to their extensive
coverage and high optical depth, tend to reflect a signif-
icant portion of incoming solar radiation back to space,
thereby reducing the amount of irradiance at the sur-
face (ISCCP, n.d.; Rossow & Schiffer, 1999; Wood, 2015).
In addition, middle-level clouds, such as As, while also
reflecting some radiation, can allow a larger fraction of
irradiance to penetrate through, especially when they are
thin or semi-transparent. Sc–St–As were grouped in the
present study. However, it is evident that the impacts on
GHI vary among these cloud types. This variation could be
another potential cause of the poor performance observed
in this class. Therefore, accurately grouping cloud types is
a challenge for future research.

Except for those classes that are inherently more dif-
ficult to classify, our model demonstrates a good perfor-
mance across most classes and did not show evidence
of overfitting, even in classes with few samples in the
test set. To further validate the model, we also performed
cross-validation on the combined training and validation
data and compared the results with our initial configura-
tion. Despite a slight variation in the hyperparameters, the
performance showed minimal differences, reinforcing our
confidence in the model’s generalization and stability.

Regarding the analysis of the ability to discriminate
between mixed and not-mixed, we found the ROC curve
(Figure 8a) shows that the entropy of the output prob-
abilities has a high predictive value to determining the
presence of multiple types of clouds simultaneously. This
behavior is more evident in Figure 8b, where the differ-
ences between the mixed and not-mixed cloud sets are
marked. The high AUC value of 0.83 demonstrates that
the model exhibits high uncertainty on these scenarios,
which is consistent with the behavior expected when ana-
lyzing the all-sky image. Through the preceding analysis,
we can conclude that, when predicting a specific class,
there is significant confidence that our model avoids any
potential confusion with the mixed class.

Finally, this study should be considered in the con-
text of its own limitations. In particular, the subjective
nature of human observation and potential variations in
interpretation during the labeling process contribute to
discrepancies in the labeled ground truth. To address these
challenges, it is crucial to refine the training of observers
and standardize labeling procedures. Exploring alternative
methods for labeling data, such as using lidar measure-
ments to determine cloud base height (Lu et al., 2021; Pal
et al., 1992) and introducing a cloud altitude classifica-
tion, could also be instrumental in enhancing the accuracy
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of cloud detection models. One detail to keep in mind is
that, in this work, we used the same database for train-
ing the algorithms as in Loyber (2022), which labeled the
data using the criterion of (Liu et al., 2019), enabling the
integration of this set with the Multimodal Ground-based
Cloud Database (Liu, Li, et al., 2020; Liu, Mei, et al., 2020)
to train more robust algorithms, as in (Liu et al., 2019). In
this sense, it is important to consider that the internal pro-
portion of each cloud type in the target groups with which
we work may affect the model’s ability to discern more
minority types. Nonetheless, our framework is sufficiently
general to be applied to datasets with any type of label-
ing. Although the model is unable to distinguish between
the 10 different types of clouds defined by the WMO,
limiting some practical application, this development rep-
resents an advance in this sense by categorizing them into
six broader categories. On the other hand, the classifica-
tion of cloud types into single categories (e.g., grouping
two cloud genera into one) could represent an oversim-
plification. Refining this division to consider the intrinsic
characteristics of each cloud type is a promising direction
for future work. Despite these limitations that restrict the
applicability of the algorithm to problems such as detailed
cloud type analysis, this development could contribute to
areas such as operational meteorology, aviation, and solar
energy management, among others.

Additionally, the number of Cb samples in the test and
validation sets was very low after the partition. To address
this issue, we implemented a novel criterion based on the
presence of lightning, which allowed us to quickly include
more samples in these evaluation sets. This additional cri-
terion might affect the trade-off between variance and bias.
However, since the training set did not include Cb samples
collected using the lightning criterion, we did not expect
the model to be affected by this selection procedure. Nev-
ertheless, including these samples in the validation set
might have introduced a certain bias, as the hyperparam-
eters were calibrated using this set. We invite the commu-
nity to validate and further explore this aspect using our
model, which is publicly released at https://github.com
/anabelalusi/cloud-classification.

Another limitation of the model could be the classi-
fication of high aerosol loading events (such as volcanic
eruptions, biomass burning, among others). The algorithm
may misidentify classes during these events because it
was not specifically trained under such conditions. Fur-
thermore, it is important to acknowledge the inherent
differences between our pyranometer-based approach and
human observer classification. The pyranometer method
primarily considers clouds that intersect the sun’s path,
whereas human observers have a panoramic view of
clouds across the entire sky. These differences underscore
the complexity of our task in the labeling of data and the

need for continued consideration of multiple data sources
in cloud-classification algorithms. Moreover, suboptimal
performance when grouping heterogeneous cloud types
indicates an area for enhancement in future research.

It is also worth mentioning that our model does not
feature any engineering tools to control and prevent errors
in outliers, meaning that it could suffer from typical prob-
lems of ML algorithms such as data drifting (Žliobaitė
et al., 2014). Although this might be prevented by, for
example, providing to the user the Shannon entropy as a
surrogate of the uncertainty of the model, we have exper-
imentally observed a relationship between this metric
and the presence of mixed types of clouds. One potential
solution to avoid using an input sample that is actually
an outlier might be to train an anomaly detection model,
such as isolation forests (Liu et al., 2008), using the orig-
inal training data and apply it in test time on any new
input sample. This would allow it to identify deviations
from the original distribution of data used for training,
therefore informing the user about the correctness of the
output in an unsupervised setting. We encourage future
research in this direction.

Finally, notice that all our experiments were conducted
using data from a single meteorological station. Although
our approach exhibited good performance for discriminat-
ing clouds under this setting, future research should be
focused on studying if this behavior could be extrapolated
to, for example, regions with similar climate conditions or
across other meteorological and geographical settings.

5 CONCLUSION

A low-cost ML model for cloud classification was devel-
oped using GHI time-series obtained from pyranometer
measurements and a clear-sky model as input. This infor-
mation was used to obtain the model features in a spe-
cific time interval. The classes were obtained by labeling
all-sky images by meteorological observers. Linear and
nonlinear models were trained, with experimental results
showing that nonlinear models outperform linear models.
Between the two nonlinear models evaluated, the XGBoost
algorithm stands out as the best performer, achieving high
efficiency reaching an accuracy of 0.88 and a Cohen’s
kappa of 0.84 for an optimal time window of 33 min. In par-
ticular, the algorithm presents an excellent performance
to determine Clear-sky cases with accuracy and F1 score
above 0.99. These results demonstrate that the charac-
terization of the variability of GHI through the proposed
features is related to the cloud classes; that is, the GHI is a
valuable parameter to classify clouds.

This novel approach addresses the constraints faced
by sites with limited equipment and provides a valuable
solution for cloud classification using readily available

https://github.com/anabelalusi/cloud-classification
https://github.com/anabelalusi/cloud-classification
https://github.com/anabelalusi/cloud-classification
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measurements. The ability of the algorithm to classify
cloudiness based on irradiance measurements alone
opens up possibilities for improved forecasting and anal-
ysis in areas where comprehensive meteorological data
or experts are limited. In addition, our results pave the
way towards combining pyranometer measurements with
additional multimodal data—that is, the height of the
cloud base as measured using lidar—to further improve
classification results. We expect that, by combining these
additional data sources with GHI measurements, our
algorithm might achieve improvements, particularly for
classes that have proven to be more challenging to predict
from these signals.

Overall, owing to the critical considerations we made
during the data preprocessing phase, our algorithm
achieved good experimental results, positioning it as an
efficient, cost-effective method for cloudiness classifica-
tion and widespread availability at most meteorological
sites. Our model is publicly released for research purposes
at https://github.com/anabelalusi/cloud-classification.
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extraction.
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