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Abstract—Diabetic Macular Edema (DME) is a leading cause
of vision loss among patients with Diabetic Retinopathy (DR).
While deep learning has shown promising results for automati-
cally detecting this condition from fundus images, its application
remains challenging due the limited availability of annotated
data. Foundation Models (FM) have emerged as an alternative
solution. However, it is unclear if they can cope with DME
detection in particular. In this paper, we systematically compare
different FM and standard transfer learning approaches for
this task. Specifically, we compare the two most popular FM
for retinal images–RETFound and FLAIR–and an EfficientNet-
B0 backbone, across different training regimes and evaluation
settings in IDRiD, MESSIDOR-2 and OCT-and-Eye-Fundus-
Images (OEFI). Results show that despite their scale, FM do
not consistently outperform fine-tuned CNNs in this task. In
particular, an EfficientNet-B0 ranked first or second in terms
of area under the ROC and precision/recall curves in most eval-
uation settings, with RETFound only showing promising results
in OEFI. FLAIR, on the other hand, demonstrated competitive
zero-shot performance, achieving notable AUC-PR scores when
prompted appropriately. These findings reveal that FM might not
be a good tool for fine-grained ophthalmic tasks such as DME
detection even after fine-tuning, suggesting that lightweight CNNs
remain strong baselines in data-scarce environments.

I. INTRODUCTION

Diabetic macular edema (DME) is one of the most serious
vision-threatening conditions linked to diabetic retinopathy
(DR) [1]. It occurs when fluid accumulates in the macula, lead-
ing to swelling that distorts central sight [2]. Early detection is
crucial to initiate treatment promptly and prevent irreversible
vision loss [3]. But, as the disease progresses without notice-
able symptoms, it may go undetected until patient experiences
vision impairment [4], so regular checkups are recommended
i.e. through fundus imaging, a time-consuming process that
depends on ophthalmologists skills [5].

In recent years, deep learning has shown strong potential for
automating medical image analysis [6], including the detection
of retinal diseases [7]. However, developing high-performing
models for DME detection remains particularly challenging
due to the limited availability of annotated data [8]. Foundation
models (FMs) have emerged as a promising approach to
address this limitation [9]. These models are pre-trained on
large general-purpose datasets using pretext tasks–either via
self-supervised learning from unlabeled samples [10], [11]
or by learning to match images and their associated clinical
reports. Such strategies help the models learn meaningful

Fig. 1: Schematic representation of our study. We compared
the standard transfer learning (TL) approach of supervised
task-specific fine-tuning of a CNN pre-trained on ImageNet
against linear probing, supervised fine-tuning and zero-shot
prediction using Foundation Models (FMs).

representations of the data, serving as a robust base for devel-
oping specialized models for downstream tasks through linear
probing or fine-tuning on smaller, task-specific datasets [12].

To ensure alignment between the data used during pre-
training and that used for fine-tuning, several domain-specific
FM trained solely on retinal images have been introduced,
such as RETFound [11], FLAIR [13], and others [14]–[16].
RETFound, for example, employs self-supervised learning
with masked autoencoders [17] to learn an encoder that can be
adapted to other fundus image-specific tasks. FLAIR [13], on
the other hand, is trained to align image–text pairs using the
CLIP framework [18]. It combines an image encoder based
on ResNet-50 [19] with a text encoder based on BioClini-
calBERT [20], enabling the development of a robust image
encoder for fine-tuning, as well as a zero-shot model [21]
capable of predicting outcomes by jointly processing image
and text prompts and computing their cosine similarity [13].

Recent studies have explored the use of these models for
detecting conditions such as hypertensive retinopathy [22],
DR [14], [23], glaucoma [14], [23], and others, demonstrating
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promising results. These include either superior performance
compared to standard baselines [11], [14], [23] or improved
data efficiency for downstream tasks [11]. However, the effec-
tiveness of these models as a starting point for DME detection
remains unexplored. In this study, we address this gap by
evaluating the performance of FMs for DME detection under
limited-data conditions [9] (Fig. 1). Specifically, we evalu-
ate two of the most popular FMs–RETFound and FLAIR–
under linear probing, fine-tuning, and/or zero-shot prediction
scenarios, and compare them against an EfficientNet-B0 [24]
baseline pre-trained on ImageNet [25] and fine-tuned for this
task. Our results show that standard transfer learning remains
a strong baseline for DME detection, often outperforming FM-
derived models across multiple evaluation settings.

II. METHODS

Our study is schematically presented in Fig. 1. Specifically,
we evaluate three methods: standard fine-tuning (Section II-A),
linear probing using FMs as fixed feature extractors (Sec-
tion II-B), and zero-shot prediction with vision-language FMs
(Section II-C). Each approach is described in the sequel.

A. Standard Fine-Tuning

In the standard fine-tuning approach, we evaluate three
models: EfficientNet-B0, the ResNet-50 encoder from FLAIR,
and RETFound, which uses a Vision Transformer (ViT-S) [26].
We chose EfficientNet-B0 pre-trained on ImageNet, as it is an
established baseline for transfer learning. We also included the
ResNet-50 from FLAIR to study the benefits of prior training
on retinal images and text, which should enable more domain-
specific representations. Finally, we included RETFound’s ViT
to assess the effect of using self-supervised learning.

Each network is adapted for DME detection by supervised
fine-tuning (SFT) on retinal fundus images labeled as DME or
non-DME. At this phase, all model layers are updated using
the training data from each dataset, allowing them to specialize
their representations for the DME detection task.

B. Linear Probing

To explore the representational power of FMs, we evaluate
linear probing as an alternative to full fine-tuning. In this setup,
the weights of the backbone model remain frozen, and only a
lightweight linear classifier is trained on top of the extracted
features. We use RETFound as fixed feature extractor and train
two classifiers–standard Ridge Regression and LASSO [27]–
on its embeddings, to distinguish between DME and non-DME
cases. To mitigate the effect of the so-called curse of dimen-
sionality, we also trained these classifiers using dimensionality
reduction via Principal Component Analysis (PCA).

C. Zero-shot prediction

We also used FLAIR as a zero-shot classifier, leveraging
its abilities to align visual and textual representations [13],
[18]. In this setup, no fine-tuning are performed on networks’
parameters. Instead, the model receives a fundus image along
with predefined text prompts describing both presence/absence

of DME-related findings. Each image is encoded by the
ResNet-50 image encoder, and each prompt is processed by
the BioClinicalBERT text encoder. Classification is then per-
formed by computing the cosine similarity between image and
text embeddings, and the predicted class is assigned based on
the prompt with the highest similarity. No systematic prompt
engineering was applied for evaluation. Instead, we evaluated
the positive prompts describing DME-related findinds that
were originally used for training FLAIR [13] (Table I), and
constructed corresponding negative prompts by negating them.

III. EXPERIMENTAL SETUP

A. Materials

Empirical evaluation was performed using three public
datasets: the popular MESSIDOR-2 [28], [29] and IDRiD [30]
sets, widely applied for this task [31]–[33], and the recently
introduced OCT-and-Eye-Fundus-Images (OEFI) set [34].

MESSIDOR-2 contains 1740 images labeled for DME as
either negative (0) or positive (1) (1589 vs. 151, respectively).
As no fixed training, validation and test partitions are provided,
we randomly divided them using 70% and 30% for training
and test, respectively, pulling off 10% of the training set for
validation. Stratified sampling at a patient level was used to
ensure similar distribution between classes.

IDRiD, on the other hand, consists of 516 images, anno-
tated with three DME grades (0–no DME–, 1–non-clinically
significant DME–, or 2–DME–; 222, 51 and 243 images,
respectively). As our goal is to identify any DME presence,
we merged labels 1 and 2 into a single positive class, resulting
in a binary classification task. We followed the same partitions
into training and test as provided in the set, while extracted
10% of the training samples for validation.

Finally, OEFI includes 1548 eye fundus and 1113 OCT
images acquired from multiple ophthalmological institutions in
Mexico, all with binary DME labels. We only used the fundus
images (1053 and 495 with and without DME, respectively),
as an external set to study models’ generalization performance.

B. Evaluation metrics

All models were evaluated using the Area Under the ROC
(AUC-ROC) and Precision-Recall (AUC-PR) curves, two stan-
dard metrics in the literature for DME detection [11], [14],
[35]. Given the noticeable class imbalance in some of the
evaluation datasets–such as in MESSIDOR-2 (8.7% positive
cases) and OEFI (32.0%), while IDRiD is more balanced
(57.0% positive)–, we used AUC-PR on the validation set to
choose the best configuration of each model.

C. Training configuration

Supervised fine-tuning was performed using Adam opti-
mization, with learning rates empirically chosen per model and
dataset. A custom version of RandAugment [36] was used for
data augmentation. A grid search procedure was applied to fix
the number of transformations (from 1 to 7) and augmentation
strength (from 0.2 to 1.0, with increments of 0.2), choosing
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TABLE I: AUC-PR/ROC results for different models trained and tested for DME detection. First, second and third ranked
values are formatted accordingly. Values in brackets are 95% confidence intervals obtained with bootstrapping (n = 1000).

Training set Model Architecture (parameters) Setting AUC-PR (95% CI) AUC-ROC (95% CI)

IDRiD MESSIDOR-2 OEFI IDRiD MESSIDOR-2 OEFI

IDRiD
(N = 371)

CNN EfficientNet-B0 (5.3M) SFT 0.959 [0.92 - 0.98] 0.577 [0.41 - 0.74] 0.940 [0.92 - 0.95] 0.936 [0.88 - 0.98] 0.919 [0.87 - 0.96] 0.902 [0.89 - 0.92]

RETFound ViT-S (307M) SFT 0.921 [0.87 - 0.96] 0.453 [0.30 - 0.59] 0.965 [0.95 - 0.97] 0.887 [0.82 - 0.94] 0.717 [0.61 - 0.81] 0.939 [0.93 - 0.95]

RETFound ViT-S (307M) LP (Ridge) 0.734 [0.62 - 0.84] 0.195 [0.12 - 0.32] 0.559 [0.53 - 0.59] 0.652 [0.54 - 0.75] 0.656 [0.55 - 0.75] 0.240 [0.22 - 0.26]

RETFound ViT-S (307M) LP (PCA + Ridge) 0.714 [0.59 - 0.82] 0.170 [0.09 - 0.27] 0.681 [0.65 - 0.72] 0.624 [0.51 - 0.73] 0.629 [0.54 - 0.72] 0.511 [0.48 - 0.54]

RETFound ViT-S (307M) LP (LASSO) 0.727 [0.62 - 0.83] 0.218 [0.12 - 0.34] 0.665 [0.63 - 0.70] 0.626 [0.51 - 0.73] 0.653 [0.56 - 0.75] 0.501 [0.47 - 0.53]

RETFound ViT-S (307M) LP (PCA + LASSO) 0.754 [0.64 - 0.85] 0.238 [0.15 - 0.38] 0.721 [0.69 - 0.75] 0.661 [0.55 - 0.76] 0.710 [0.61 - 0.80] 0.562 [0.53 - 0.59]

FLAIR RN-50 (26M) SFT 0.925 [0.87 - 0.97] 0.598 [0.47 - 0.73] 0.850 [0.83 - 0.87] 0.879 [0.81 - 0.94] 0.831 [0.74 - 0.91] 0.749 [0.72 - 0.78]

MESSIDOR-2
(N = 1096)

CNN EfficientNet-B0 (5.3M) SFT 0.949 [0.90 - 0.98] 0.792 [0.68 - 0.88] 0.933 [0.91 - 0.95] 0.916 [0.85 - 0.96] 0.959 [0.93 - 0.98] 0.918 [0.90 - 0.94]

RETFound ViT-S (307M) SFT 0.872 [0.80 - 0.93] 0.623 [0.48 - 0.74] 0.917 [0.90 - 0.93] 0.805 [0.72 - 0.88] 0.886 [0.83 - 0.94] 0.856 [0.84 - 0.87]

RETFound ViT-S (307M) LP (Ridge) 0.729 [0.61 - 0.83] 0.250 [0.16 - 0.38] 0.554 [0.53 - 0.58] 0.636 [0.53 - 0.74] 0.784 [0.71 - 0.85] 0.315 [0.28 - 0.35]

RETFound ViT-S (307M) LP (PCA + Ridge) 0.726 [0.60 - 0.83] 0.203 [0.13 - 0.33] 0.845 [0.82 - 0.87] 0.628 [0.51 - 0.73] 0.736 [0.65 - 0.81] 0.756 [0.73 - 0.78]

RETFound ViT-S (307M) LP (LASSO) 0.697 [0.57 - 0.81] 0.260 [0.16 - 0.39] 0.574 [0.55 - 0.60] 0.622 [0.51 - 0.72] 0.786 [0.72 - 0.85] 0.370 [0.34 - 0.40]

RETFound ViT-S (307M) LP (PCA + LASSO) 0.725 [0.60 - 0.83] 0.204 [0.13 - 0.33] 0.843 [0.82 - 0.87] 0.627 [0.51 - 0.73] 0.736 [0.65 - 0.81] 0.755 [0.73 - 0.78]

FLAIR RN-50 (26M) SFT 0.916 [0.85 - 0.96] 0.703 [0.56 - 0.81] 0.941 [0.93 - 0.95] 0.878 [0.80 - 0.94] 0.908 [0.85 - 0.95] 0.897 [0.88 - 0.91]

Zero-shot
(N = 0)

FLAIR RN-50 (26M) / BCB (110M) Prompt 1 0.925 [0.86 - 0.97] 0.565 [0.42 - 0.70] 0.918 [0.89 - 0.94] 0.907 [0.85 - 0.96] 0.936 [0.91 - 0.96] 0.907 [0.89 - 0.93]

FLAIR RN-50 (26M) / BCB (110M) Prompt 2 0.898 [0.80 - 0.97] 0.525 [0.38 - 0.68] 0.945 [0.93 - 0.96] 0.901 [0.84 - 0.96] 0.929 [0.90 - 0.95] 0.935 [0.92 - 0.95]

FLAIR RN-50 (26M) / BCB (110M) Prompt 3 0.922 [0.86 - 0.97] 0.546 [0.40 - 0.69] 0.861 [0.83 - 0.89] 0.909 [0.85 - 0.96] 0.932 [0.90 - 0.95] 0.792 [0.77 - 0.82]

FLAIR RN-50 (26M) / BCB (110M) Prompt 4 0.879 [0.78 - 0.96] 0.503 [0.37 - 0.68] 0.896 [0.87 - 0.92] 0.884 [0.81 - 0.95] 0.931 [0.90 - 0.95] 0.868 [0.85 - 0.89]

RN-50: ResNet-50. BCB: BioClinicalBERT. SFT: Supervised Fine-Tuning. LP: Linear Probing. Prompt 1: ”macular edema”. Prompt 2: ”leakage of
fluid within the central macula from microaneurysms”. Prompt 3: ”presence of exudates”. Prompt 4: ”presence of exudates within the radius of one disc
diameter from the macula center”.

operations from a pool that included adjustments to bright-
ness, contrast, saturation, and hue, random rotation, scaling,
horizontal flipping, and Gaussian blur. Parameter ranges were
empirically chosen to preserve clinical plausibility.

For linear probing, we trained both Ridge and LASSO
regression models on fixed feature vectors obtained using the
RETFound backbone. Each method was evaluated both with
and without dimensionality reduction using PCA, retaining
99% of the variance in the feature space when applied. The
regularization parameter α was selected via grid search. For
Ridge regression, we explored a broad range of α values:
[0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 200.0],
which allowed us to assess the effect of both weak and strong
regularization. In contrast, for LASSO regression, we used a
narrower and lower range: [0.0001, 0.001, 0.01, 0.1, 0.5, 1.0],
as LASSO tends to drive coefficients to zero more aggressively
and can underfit with higher regularization strengths [27].

IV. RESULTS

All quantitative results are summarized in Table I.
For models trained on IDRiD, EfficientNet-B0 achieves the

highest AUC-PR and AUC-ROC on the IDRiD test set. Among
the FMs, FLAIR after SFT is the most competitive in terms of
AUC-PR, followed closely by the fine-tuned RETFound, with
the reverse ranking when using AUC-ROC as the evaluation
metric. A similar trend is observed on OEFI, although in
this case the fine-tuned RETFound reports the highest AUC-
PR and AUC-ROC values, followed by EfficientNet-B0. Sur-
prisingly, when these models are evaluated on MESSIDOR-
2, a noticeable drop in performance is observed, with all
approaches reporting AUC-PR values below 0.6. This drop is
also reflected in AUC-ROC values, though less prominently,
with EfficientNet-B0 remaining the most accurate model.

When models are trained on MESSIDOR-2, EfficientNet-
B0 again achieves the highest AUC-PR and AUC-ROC on
both MESSIDOR-2 and IDRiD test sets. The second-best
performing model is the fine-tuned FLAIR, although with

a larger performance gap than observed when training on
IDRiD. The fine-tuned RETFound consistently ranks third
by a significant margin. A similar pattern is observed when
evaluated on OEFI, although in this case the fine-tuned FLAIR
reports slightly higher AUC-PR values than EfficientNet-B0.

All linear probing strategies using RETFound embeddings–
including Ridge, LASSO, and their PCA variants–yield very
low AUC-PR and AUC-ROC values compared to fully super-
vised fine-tuning, regardless of the training set. The use of
PCA for dimensionality reduction yields mixed results; while
it consistently improves performance on the OEFI test set,
its effect on IDRiD and MESSIDOR-2 varies: it consistently
degrades performance when used with Ridge regression, yet
often improves metrics when paired with LASSO.

In the zero-shot setting with FLAIR, the best AUC-PR on
the IDRiD test set is achieved using Prompt 1. However,
when evaluated using AUC-ROC, Prompt 3 yields the highest
score. Conversely, on MESSIDOR-2, Prompt 1 convincingly
performed best across both metrics. On the OEFI test set, the
best performance is also consistently achieved with Prompt 2,
which reports the highest AUC-PR and AUC-ROC values.

When comparing zero-shot performance of FLAIR against
the fine-tuned version of its ResNet-50 image encoder, the
zero-shot model obtains comparable or higher AUC-ROC
values across all test sets for most of the prompts. Fine-
tuning only ensured better AUC-PR values in MESSIDOR-2,
regardless of the training set. In any other case, however, this
specialization do not improve the model.

Qualitative results are provided in Fig. 2, using explainabil-
ity maps such as GradCAMs (for the CNNs) and Gradient
Attention Rollout [37] (for RETFound). EfficientNet-B0 fo-
cused on the vascular arcades in non-DME eyes when trained
on IDRiD, whereas the version trained on MESSIDOR-2
highlighted peri-macular regions. In positive cases, the IDRiD-
trained network concentrated on isolated exudates–even out-
side the macula–and misclassified an ambiguous MESSIDOR-
2 image as healthy (bottom case); the MESSIDOR-2-trained
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Fig. 2: Qualitative comparison of explainability maps across
models and datasets, for randomly selected IDRiD and MES-
SIDOR test images (top and bottom blocks), with and without
DME. Heatmaps for EfficientNet-B0 and FLAIR (ResNet-50)
are Grad-CAMs of the predicted class, while RETFound maps
are Gradient Attention Rollouts. Border color indicates the
model’s predicted label (green = no DME, red = DME).

counterpart centered its attention on the macula and resolved
that error. RETFound, on the other hand, displayed less consis-
tent saliency: although it frequently activated around exudates
in DME images, it also produced scattered responses in healthy
eyes. FLAIR, finally, showed very sparse, pinpoint activations
after IDRiD training, offering no clear distinction between
healthy and diseased cases, whereas the MESSIDOR-2-trained
model generated broader maps consistently centered on the
macula, suggesting that it uses lesion presence or absence in
that region to guide its predictions.

V. DISCUSSION

In this study we benchmarked two FMs for retinal image
analysis–RETFound and FLAIR–for DME detection, compar-
ing them with the typical approach of fine-tuning a CNN
pre-trained on ImageNet. We selected these two due to their
increased popularity and usage in the field [38], [39].

The prevailing view in the literature is that high-capacity
FMs outperform lighter models on downstream tasks be-
cause pre-training endows them with rich, transferable rep-
resentations requiring little additional refinement. Our re-
sults challenge this assumption. A lightweight CNN such as
EfficientNet-B0 (with ≈5 M parameters) pre-trained on Ima-
geNet and fine-tuned on fundus images consistently matched–
or even surpassed–the performance of much larger FM back-
bones such as the ViT-S encoder of RETFound (≈307 M

parameters) and the ResNet-50 image encoder of FLAIR (≈26
M parameters). We hypothesize that DME detection depends
on fine-grained, local cues (e.g., exudates near the macula or
subtle vessel curvature) that broad, heterogeneous FM objec-
tives may overlook, whereas smaller CNNs preserve inductive
biases better suited to low-level retinal features. Qualitative
heatmaps in Fig. 2 support this notion: EfficientNet-B0 pro-
duces clinically meaningful activations, and FLAIR benefits
from similar CNN-based inductive biases, while RETFound is
noticeably less interpretable from a clinical perspective.

Our experiments also show that linear probing on RET-
Found embeddings yields markedly lower performance than
full fine-tuning, regardless of dataset or classifier, indicating
that successful transfer to specialized tasks such as DME
detection requires deeper adaptation–updating internal rep-
resentations, not merely the classifier head. This gap likely
arises because RETFound’s self-supervised pretraining cap-
tures broad retinal structures rather than the subtle, localized
biomarkers of DME, making the representations insufficiently
discriminative for linear probing without deeper adaptation.

FLAIR remains competitive in a zero-shot setting with-
out task-specific training. Surprisingly, fine-tuning for DME
detection does not provide consistent gains and can even
degrade accuracy relative to the original zero-shot model,
likely because the positive prompts we used were already
present during pre-training [13]. While this shows the potential
of language supervision, our results also reveal a strong de-
pendence on prompt wording: as no single prompt guaranteed
stable performance across datasets. Further work is needed
to clarify how prompt phrasing (e.g. prompt 4) and dataset
characteristics (e.g., prevalence of exudates near the optic disc
within the positive class) interact to affect zero-shot accuracy.

Beyond these model-specific findings, we consistently ob-
served lower performance on MESSIDOR-2 compared to
IDRiD. This drop is likely driven by domain shift between
the datasets: IDRiD images are high-resolution, captured with
dilated pupils and systematically annotated for exudates near
the macula, whereas MESSIDOR-2 comprises routine clinical
acquisitions with lower resolution, variable illumination, and a
much lower prevalence of DME cases. These discrepancies in
acquisition protocols, image quality, and disease distribution
make cross-dataset generalization particularly challenging, ex-
plaining the reduced transferability observed across all models.

To conclude, our study shows that FMs are not a one-size-
fits-all solution for DME detection. Although they offer clear
advantages–particularly for zero-shot inference via prompting–
lightweight CNNs remain robust and efficient baselines, prob-
ably because DME detection is an inherently fine-grained task
that is benefited by the inductive bias of CNNs, particularly
under limited data regimes. We encourage future work to
compare these results against new FMs or even large, gen-
eralistic [40], [41] or specialized VLMs [42].
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