Machine learning for ophthalmic image analysis

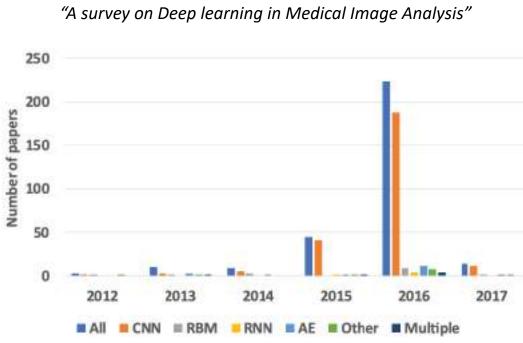
José Ignacio Orlando, PhD

Christian Doppler Laboratory for Ophthalmic Image Analysis (OPTIMA) Medical University of Vienna

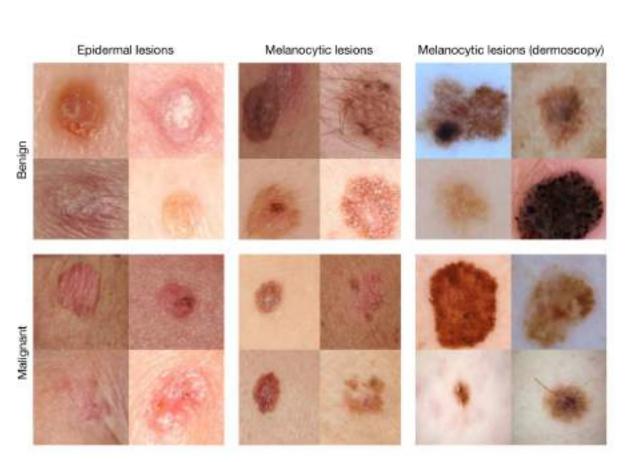
Computer vision

MEDICAL IMAGING

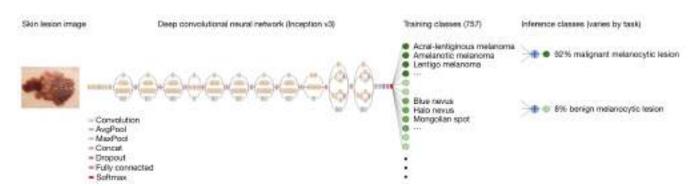
Medicine



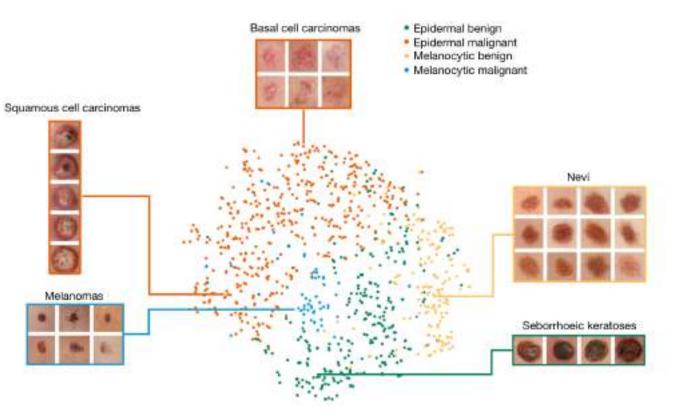
Litjens et al., Feb. 2017, MedIA



https://cs.stanford.edu/people/esteva/nature/



https://cs.stanford.edu/people/esteva/nature/



https://cs.stanford.edu/people/esteva/nature/

Original Investigation

FREE

December 12, 2017

Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

Babak Ehteshami Bejnordi, MS¹; Mitko Veta, PhD²; Paul Johannes van Diest, MD, PhD³; et al

> Author Affiliations | Article Information

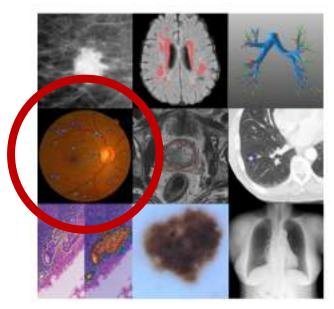
JAMA. 2017;318(22):2199-2210. doi:10.1001/jama.2017.14585

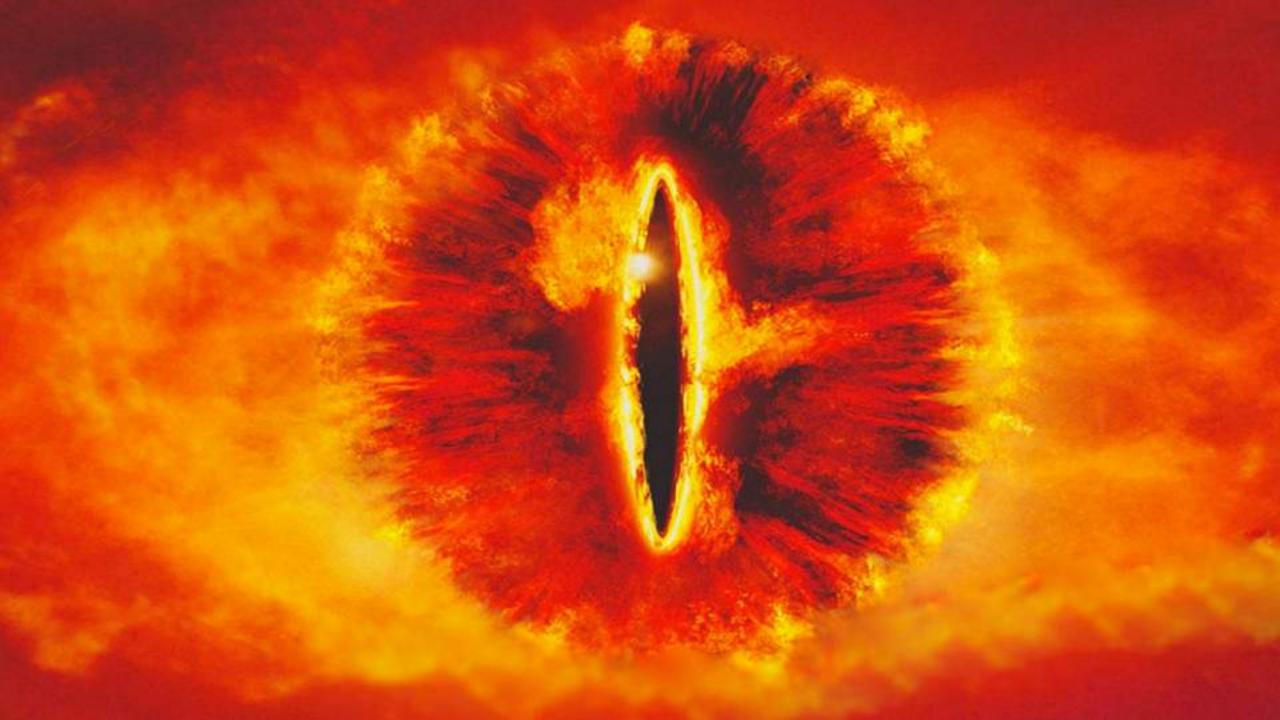
Research

JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB; Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD Litjens et al., Feb. 2017, MedIA "A survey on Deep learning in Medical Image Analysis"





What are we going to talk about today?

The eye (and the retina)

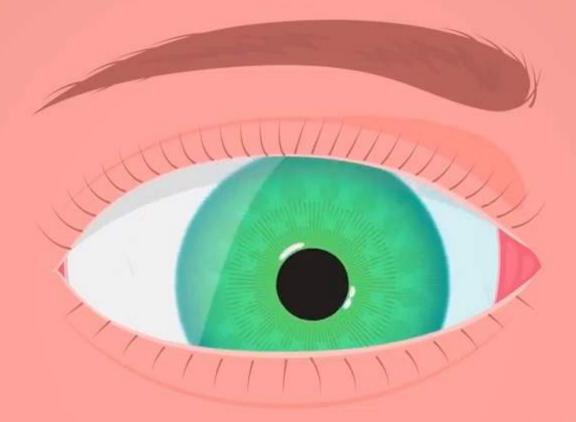
Imaging modalities in ophthalmology

Retinal diseases: AMD, DR, glaucoma

Use cases of machine/deep learning

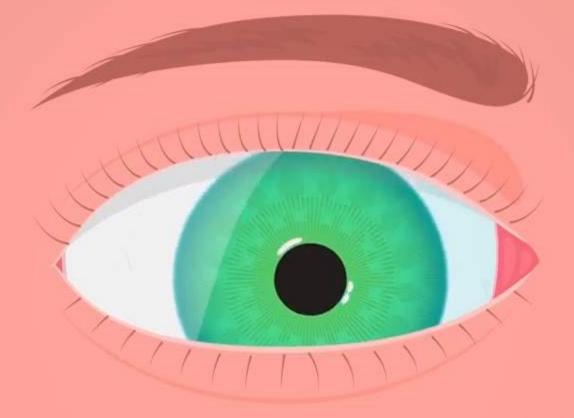
Concluding remarks

Vision

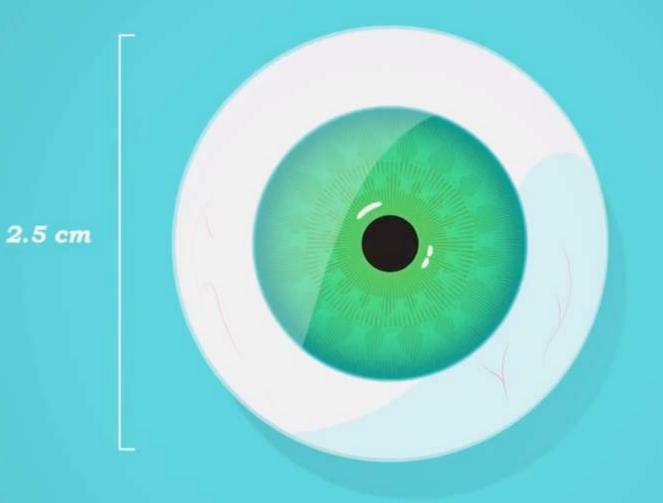


Nearly 70% of all the sensory receptors of the whole body are in the eyes

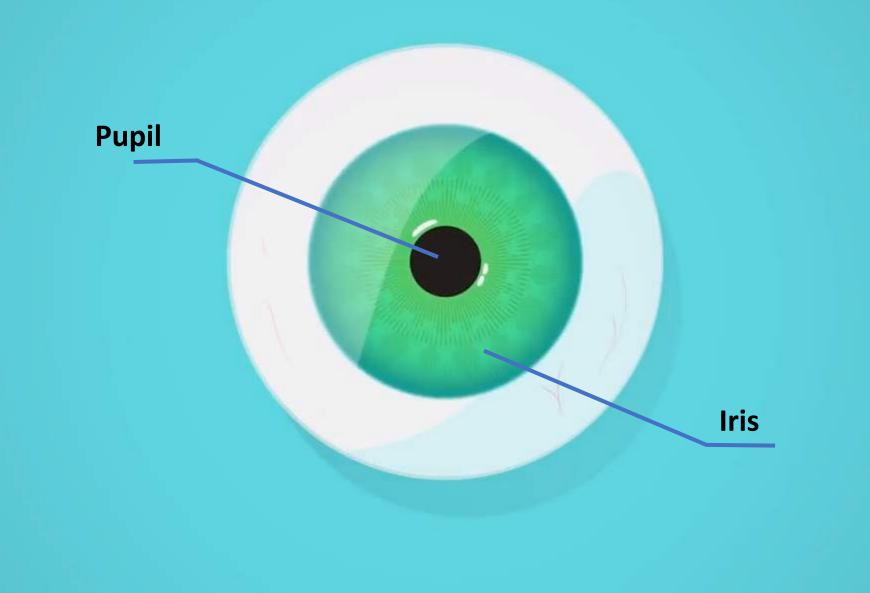
Vision

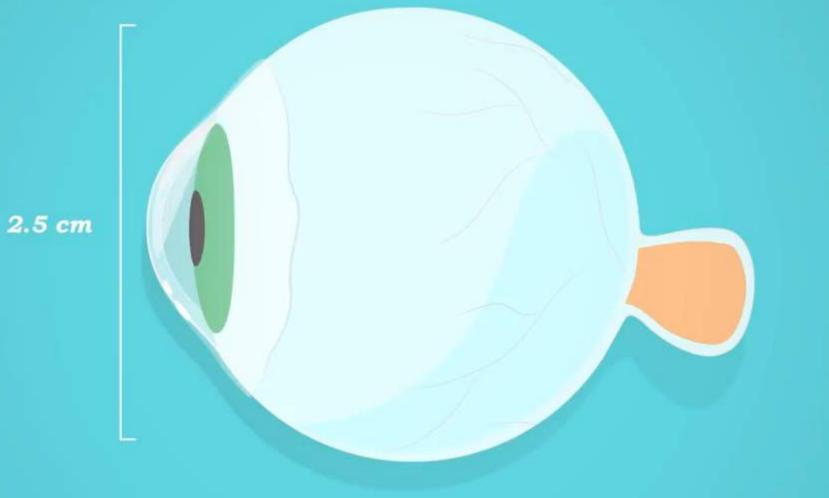


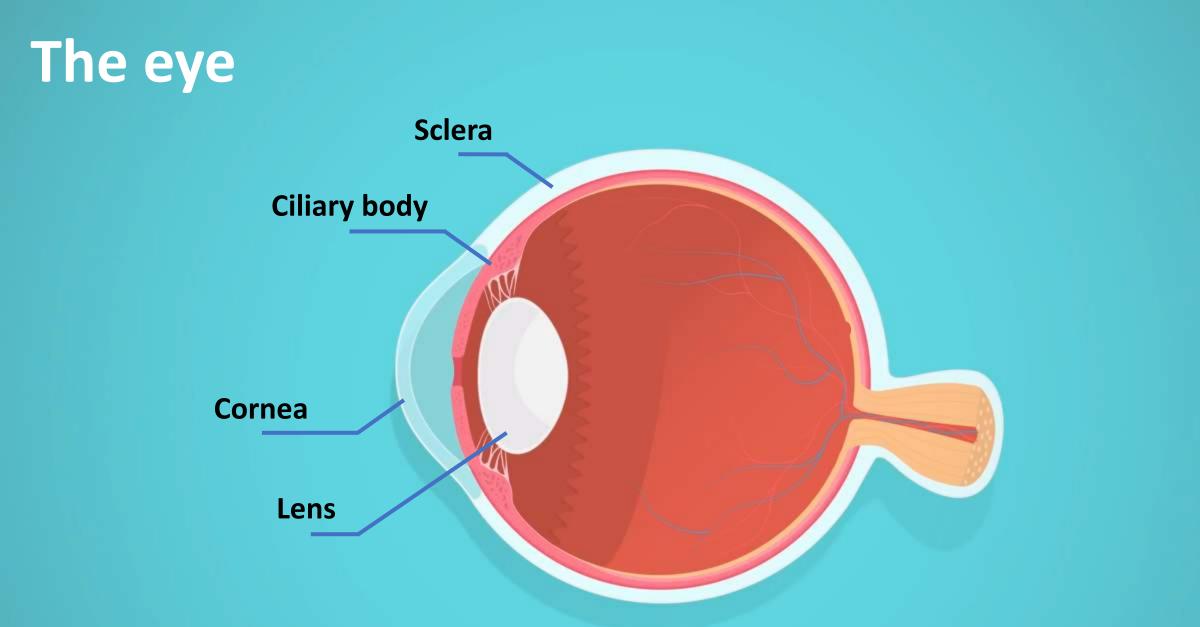
Provided by the complex interaction between the eye and the brain



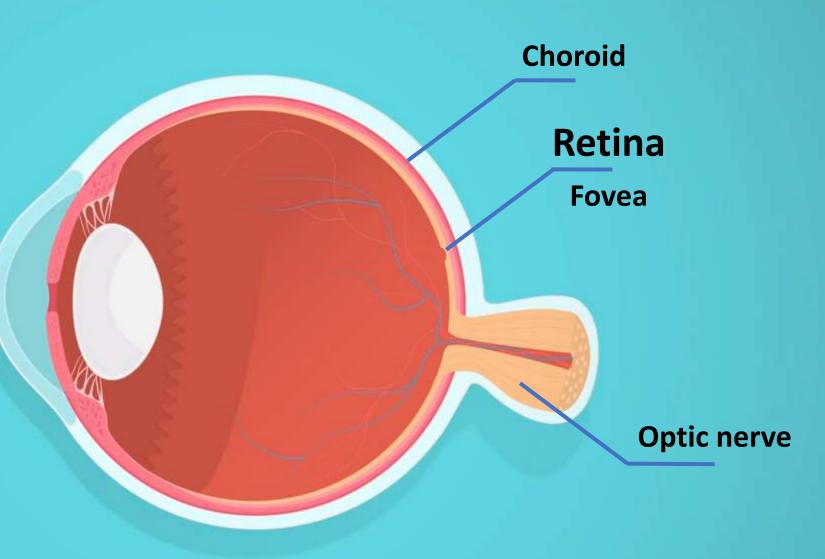
* Average diameter in adults







Anterior chamber



Posterior chamber

The lens focus the light and project it to the retina

Retinal photoreceptors and nerve fiber layer

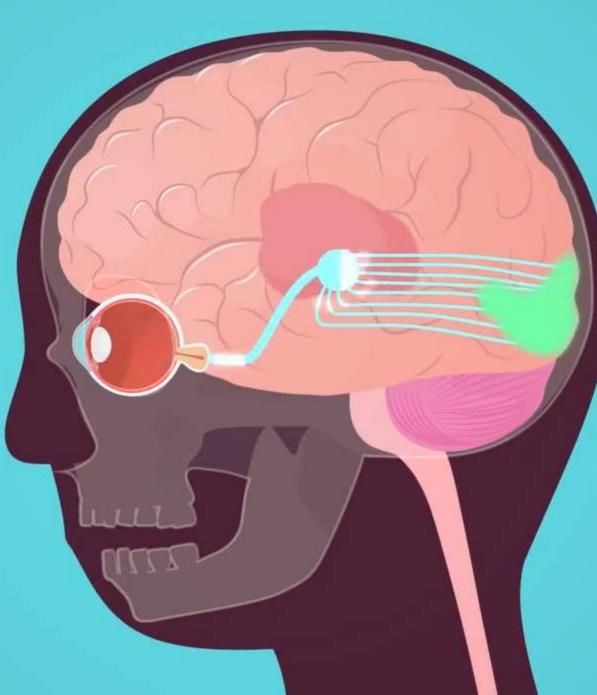
Light enters into the eye through the cornea and the pupil

Vision

The neural cells transfer electrical signals through the optic nerve to the brain

Vision

The signals are processed in the brain...



... where the images are rotated and interpreted

What are we going to talk about today?

The eye (and the retina)

Imaging modalities in ophthalmology Retinal diseases: AMD, DR, glaucoma Use cases of machine/deep learning

Concluding remarks

Ophthalmic Imaging

> Requires microscopy + imaging technique

Invasive Functional behavior Dye-based fundus angiography Fluorescein angiography (FA) Indocyanine green angiography (ICGA)

Non invasive Transparency of tissues Fundus photography Optical Coherence Tomography (OCT) OCT-Angiography (OCT-A)

Slit lamp examination Direct ophthalmology

Jitrasound

Fundus autofluorescence Scanning Laser Ophthalmocopy

Ophthalmic Imaging

Requires microscopy + imaging technique Non invasive Transparency of tissues Fundus photography Optical Coherence Tomography (OCT) OCT-Angiography (OCT-A)

Slit lamp examination Direct ophthalmology

Ultrasound

Fundus autofluorescence Scanning Laser Ophthalmocopy

Invasive Functional behavior Dye-based fundus angiography Fluorescein angiography (FA) Indocyanine green angiography (ICGA

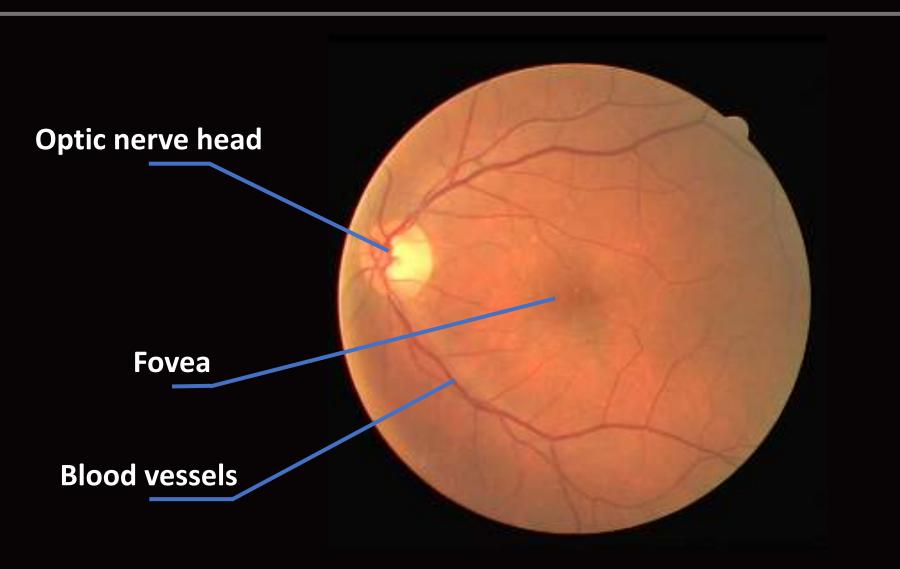
Fundus photography

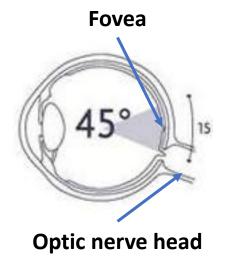
2D photography of the inner surface of the eye

Non-invasive (photograph), fast (seconds), easy and cheap (even with a smartphone!)

Fundus camera

Fundus photograph





Optical Coherence Tomography

3D imaging technique, close-to microscopy resolution

Non-invasive (no ionizing radiation, just light!), fast (seconds), easy, "cheap" (30k €)

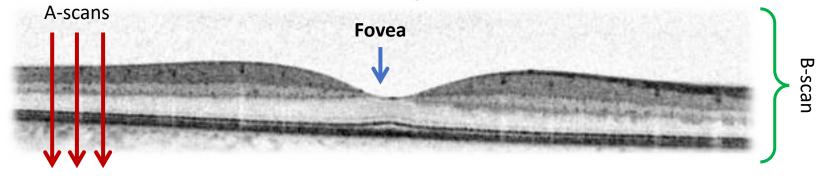
OCT scanner

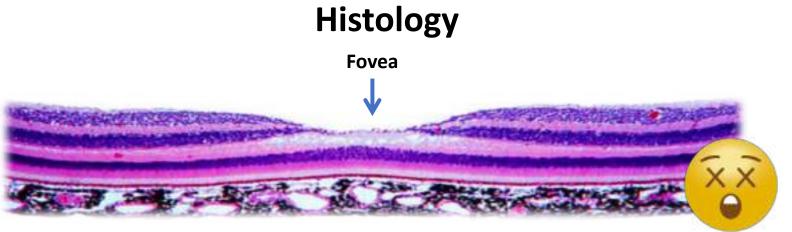
Based on low coherence interferometry

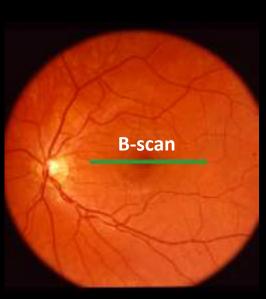
Close to microscopy resolution

OCT scan

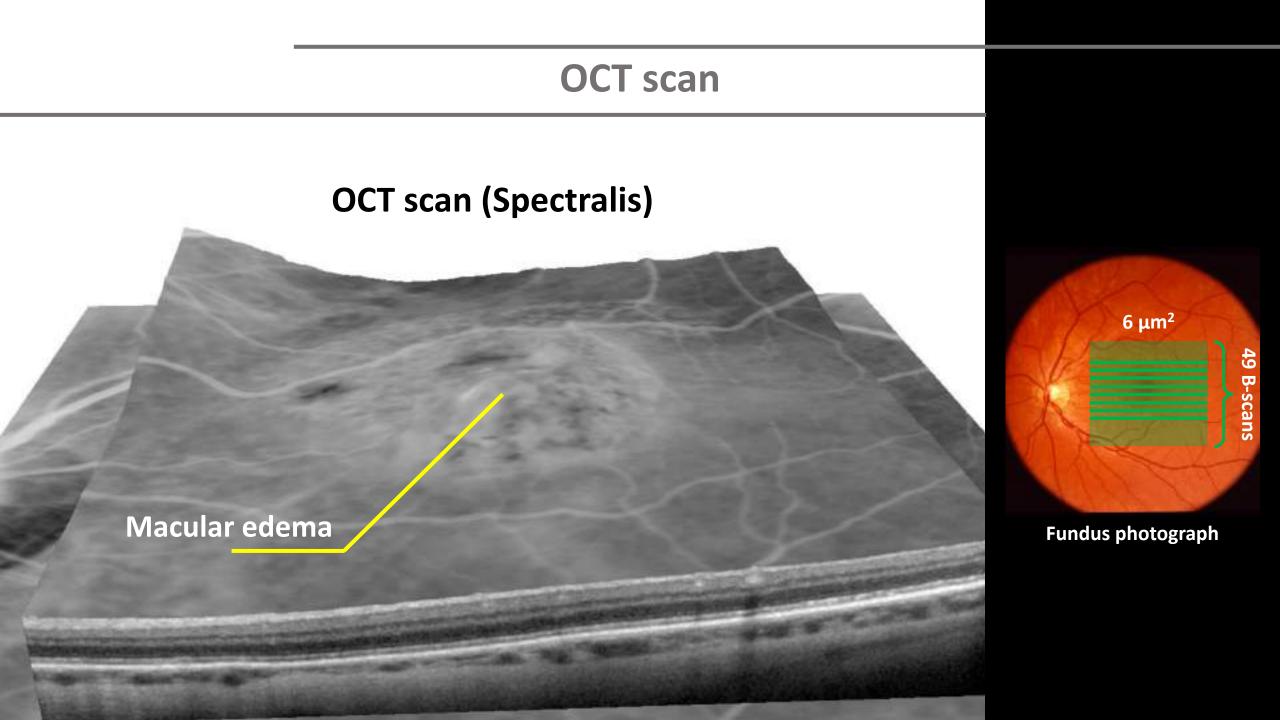
OCT scan (Spectralis)







Fundus photograph



What are we going to talk about today?

The eye (and the retina)

Imaging modalities in ophthalmology

Retinal diseases: AMD, DR, glaucoma

Use cases of machine/deep learning

Concluding remarks?

285 million people suffering from visual disorders

BLINDNESS

39 million people

VISUAL IMPAIRMENT

246 million people

Diabetic retinopathy

Due to the increased prevalence of diabetes

Glaucoma

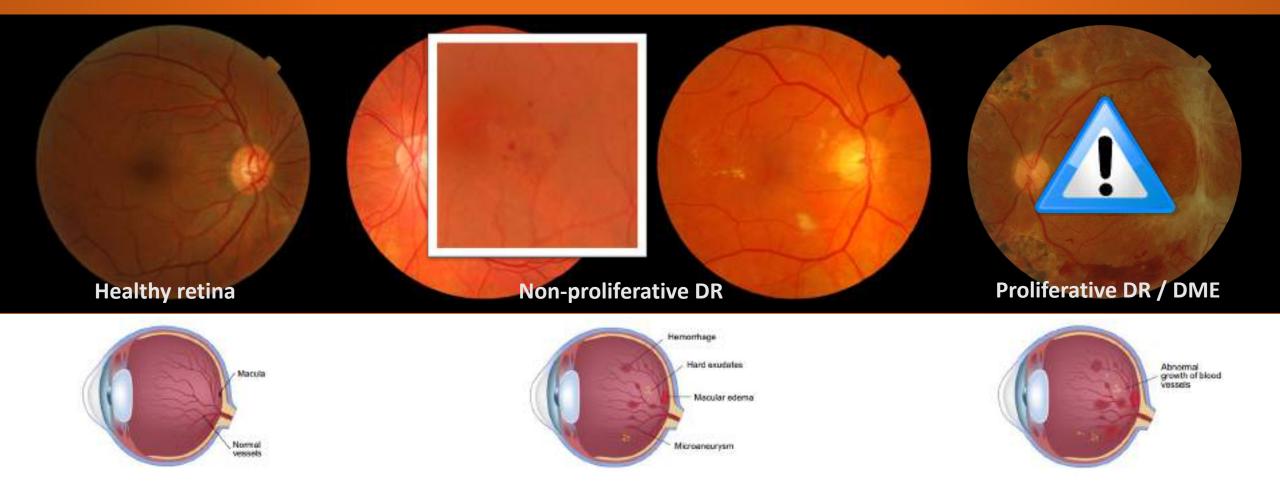
Difficulties in its early diagnosis

Age-related macular degeneration

Main cause of visual deficiency in industrialized countries

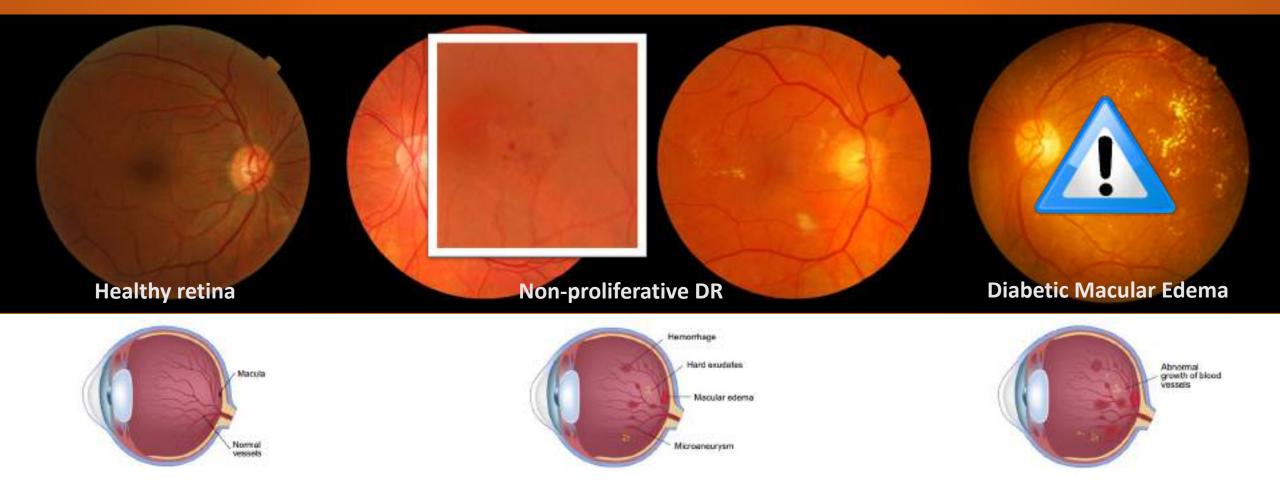
Diabetic retinopathy (DR)

Most common cause of blindness in working age population Asymptomatic in its early stages, treatments are less effective when advanced



Diabetic retinopathy (DR)

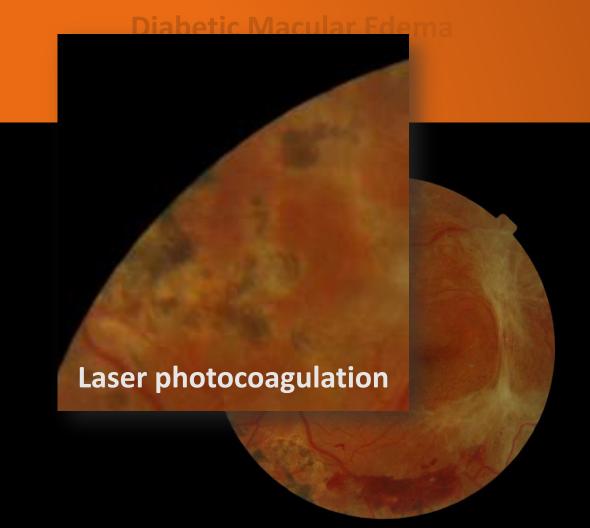
Most common cause of blindness in working age population Asymptomatic in its early stages, treatments are less effective when advanced



Diabetic retinopathy (DR)

Proliferative Diabetic Retinopathy (PDR)

Vascular proliferation Preretinal hemorrhage Vitreous hemorrhage **Retinal detachment Blindness**



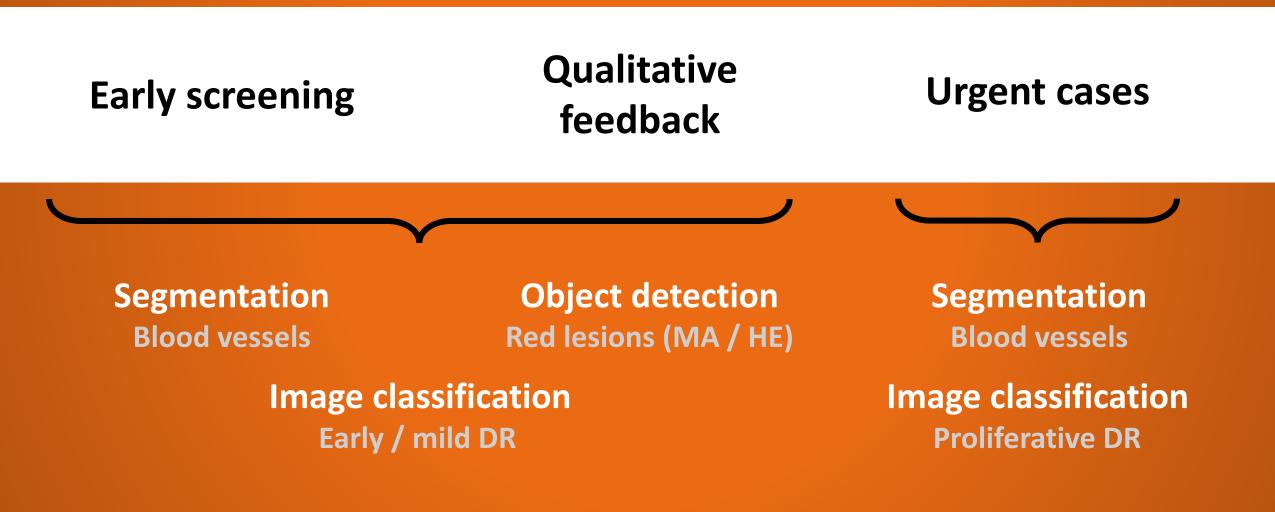
Diabetic retinopathy (DR)

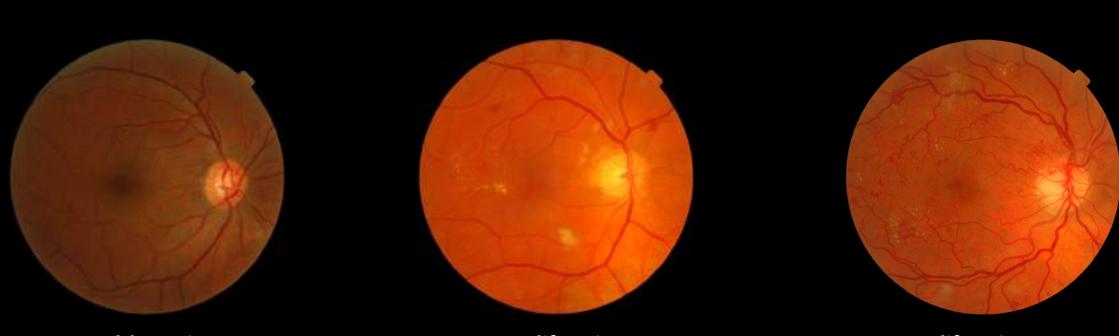
Proliferative Diabetic Retinopathy

Diabetic Macular Edema (DME)

Capillary loss Ischemia Lipid/fluid exudation Functional loss I Blindness

Diabetic retinopathy Use cases of machine/deep learning

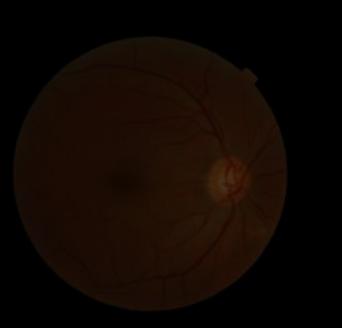




Healthy retina

Non-proliferative DR

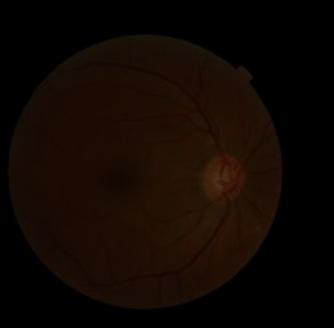
Proliferative DR



Healthy retina

Similar intensities to red lesions

Proliferative DR

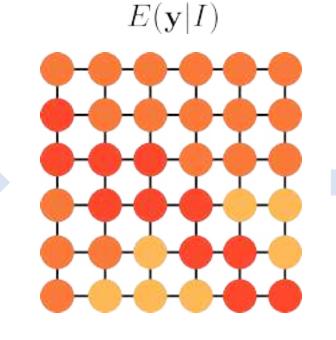


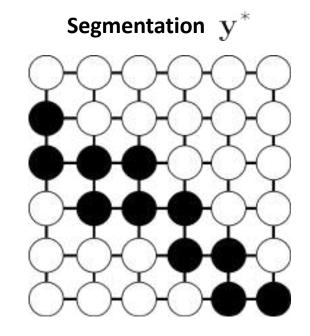
Healthy retina



Proliferative DR

Image I





 $\mathcal{G}=<\mathcal{V},\mathcal{E}>$

image pixels connectivity rule

 $E(\mathbf{y}|I)$

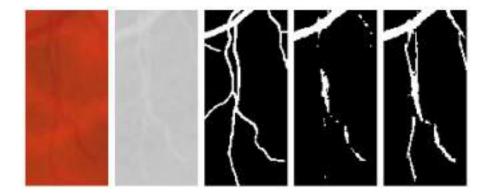
Fully connected Conditional Random Fields (FC-CRFs)

Long range interactions help to better identify thin, elongated structures

Discriminative training based on Structured Output Support Vector Machines (SOSVM)

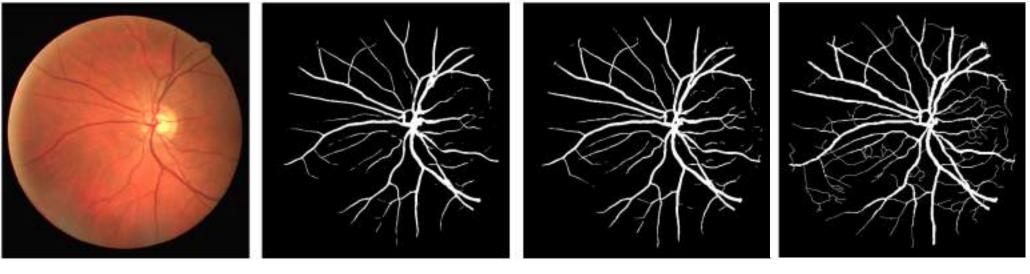
Structured output learning allows to train FC-CRFs weights for the unary and pairwise potentials





Orlando J.I. & Blaschko M. (2014). *MICCAI* Orlando J.I. et al. (2017). *IEEE TBME*

Pairwise potentials improve results both qualitatively and quantitatively



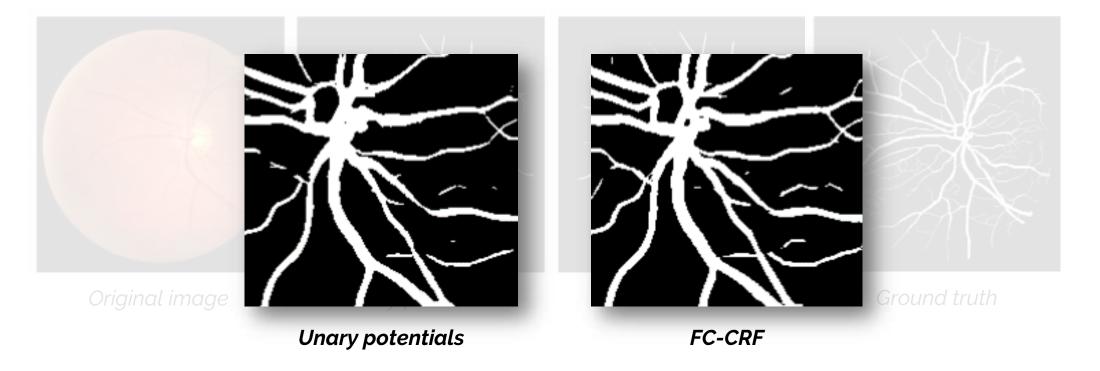
Original image

Unary potentials

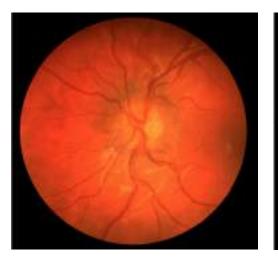
FC-CRF

Ground truth

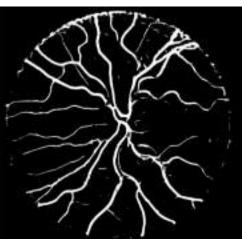
Pairwise potentials improve results both qualitatively and quantitatively



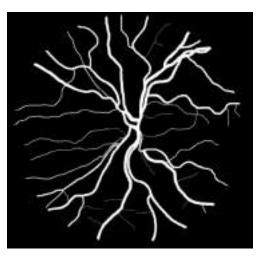
Pairwise potentials improve results both qualitatively and quantitatively



Original image



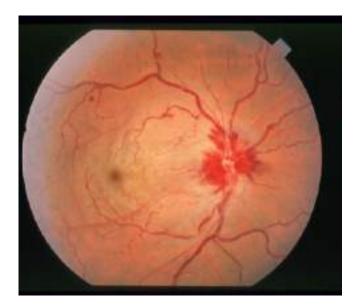
Unary potentials



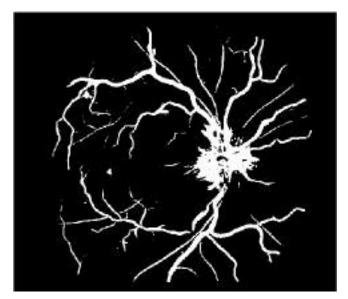
FC-CRF

Ground truth

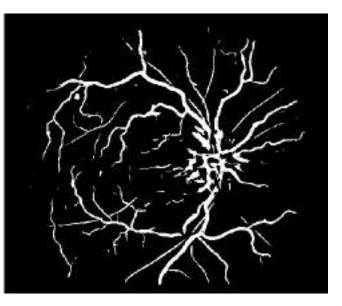
Pairwise potentials allow to identify vascular segments inside ambiguous regions



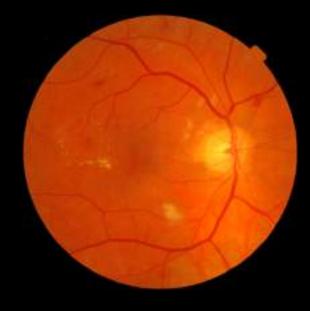
Original image



Unary potentials

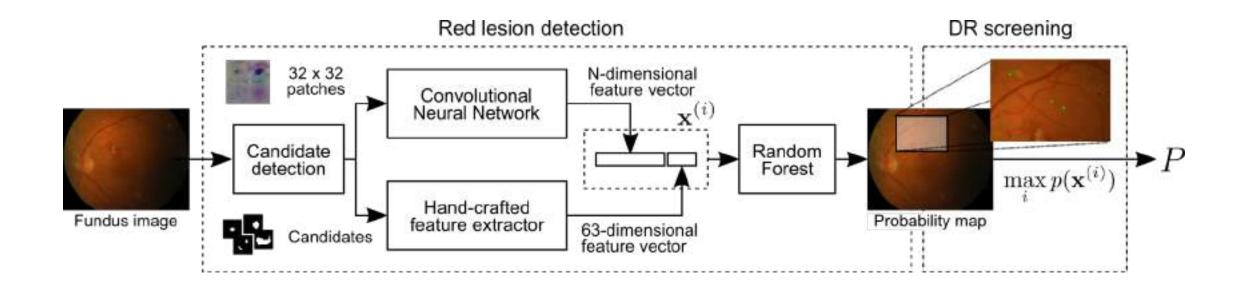


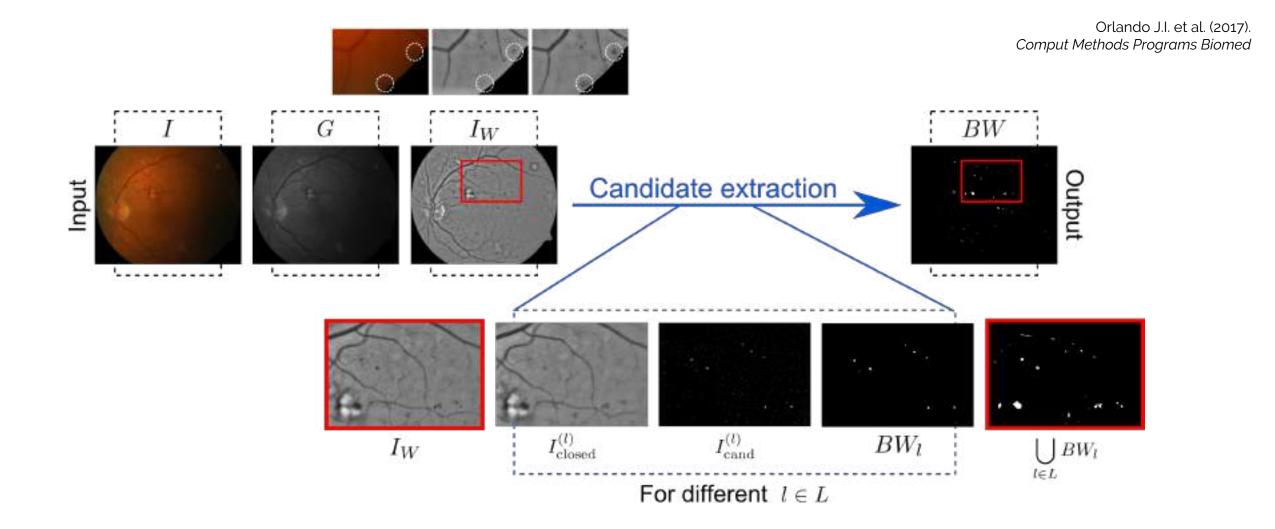
FC-CRF



Earliest signs of DR are subtle and difficult to identify manually

Collecting ground truth data for training DNN is costly and time-consuming

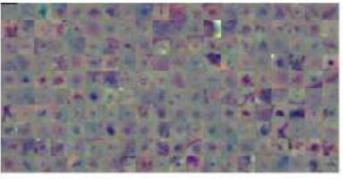




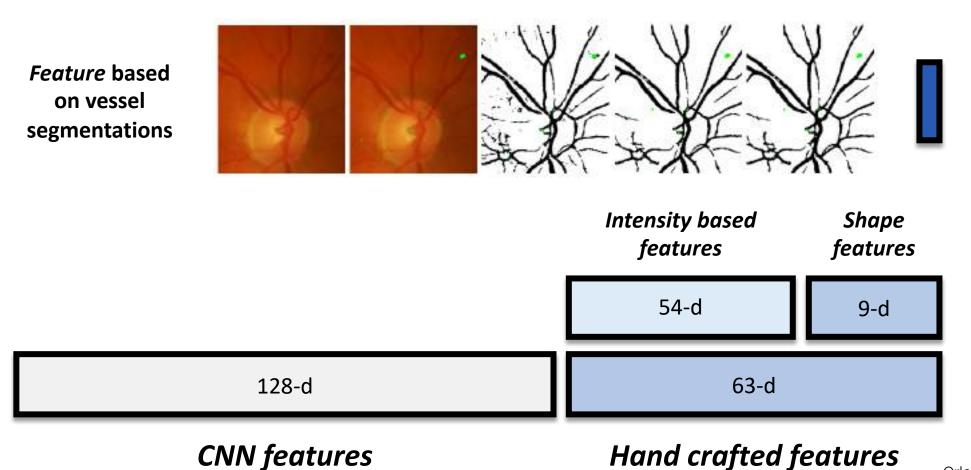
Block	Layers	Filter size	Output size
	conv	$5 \times 5 \times 3$	32
1	maxpool	3×3 - stride = 2	
	dropout	p = 0.01	
2	conv	$5 \times 5 \times 32$	32
2	avgpool	3×3 - stride = 2	
3	conv	$5 \times 5 \times 32$	64
9	avgpool	3×3 - stride = 2	
4	conv	$4 \times 4 \times 64$	128
5	fully connected	128	128
6	$\mathcal{L}_{eta}(\mathbf{W})$	128	2

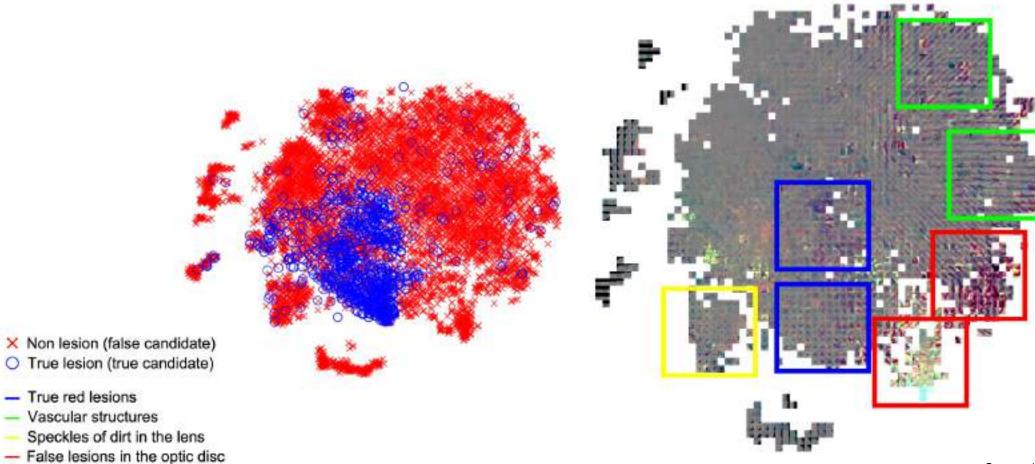
$$\mathcal{L}_{\beta}(\mathbf{W}) = -\beta \sum_{i \in Y_{+}} \log P(y^{(i)} | X^{(i)}; \mathbf{W}) - (1 - \beta) \sum_{i \in Y_{-}} \log P(y^{(i)} | X^{(i)}; \mathbf{W}))$$

(a) Non-lesions (false positive candidates)

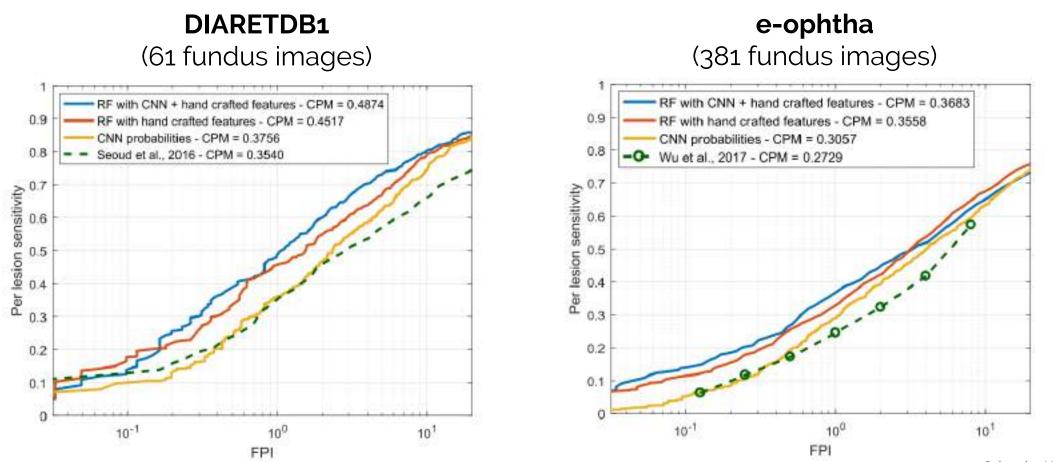


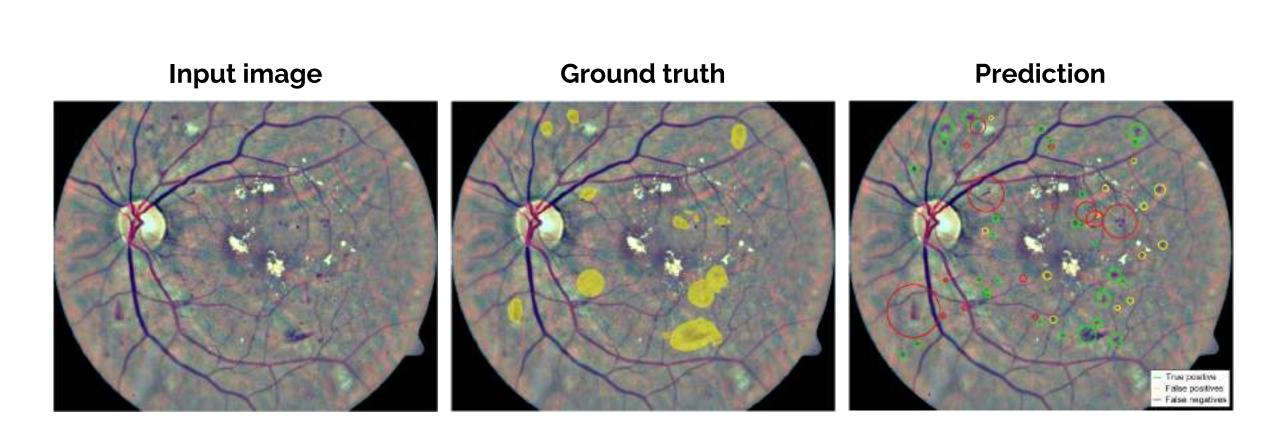
(b) Lesions (true positive candidates)

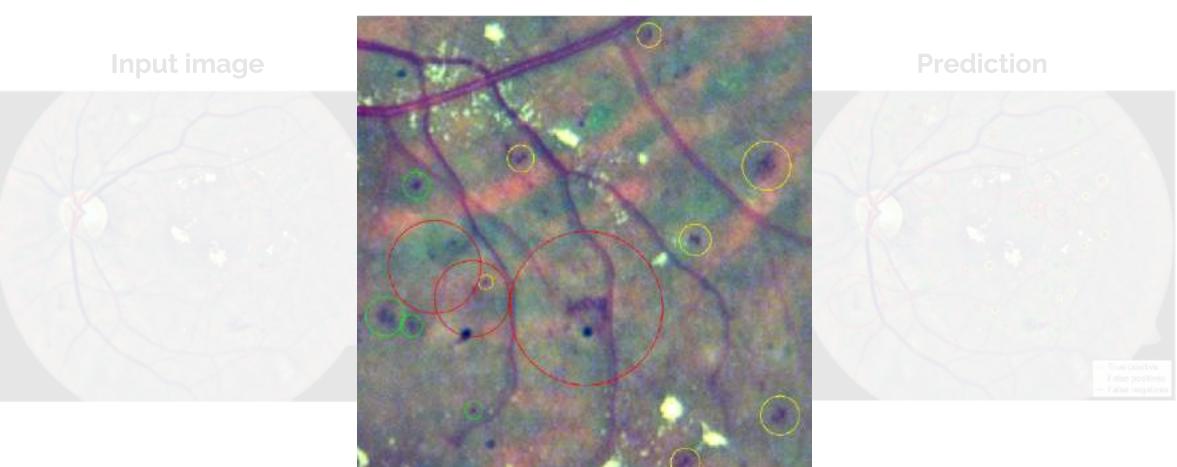




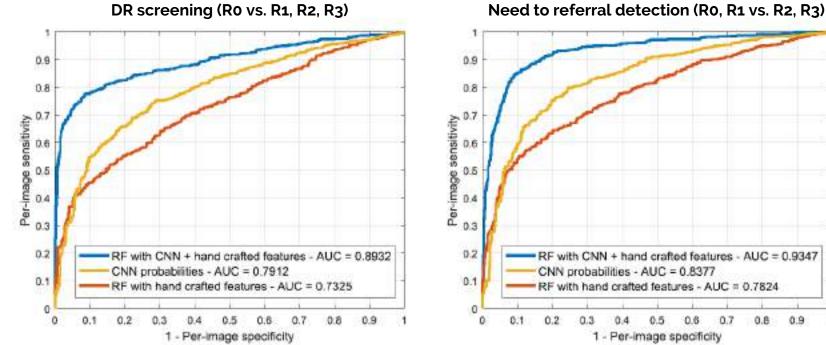
True red lesions







MESSIDOR (1200 fundus images)

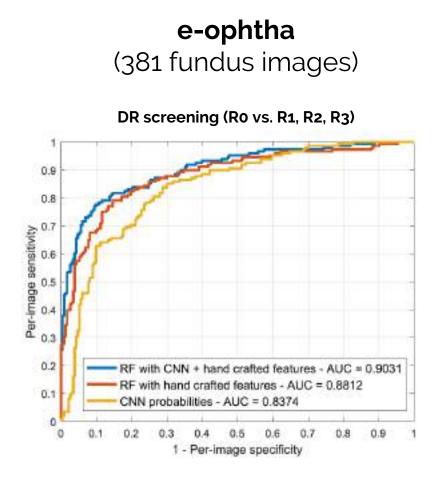


RF with CNN + hand crafted features - AUC = 0.9347

0.7

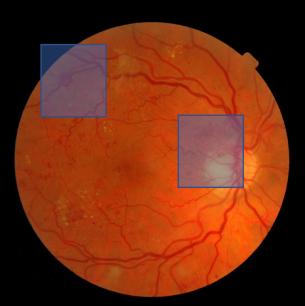
0.8

0.9



Method	Scree	ening	Need for referral	
Method	AUC	Se	AUC	Se
Expert A [176]	0.9220	0.9450	0.9400	0.9820
Expert B [176]	0.8650	0.9120	0.9200	0.9760
Antal and Hajdu, 2012 [16]	0.8750		643	
Costa et al., 2016 [43]	0.8700	8483	943) (44)	
Giancardo et al., 2013 [70]	0.8540		(e)	-
Nandy et al., 2016 [134]	2	843	0.9210	
Pires et al., 2015 [161]		-	0.8630	-
Sánchez et al., 2011 [176]	0.8760	0.9220	0.9100	0.9440
Seoud et al., 2016 [180] (DIARETDB1)	0.844	1948) 1948		-
Vo and Verma, 2016 [205] (I)	0.8620	1940) 1940)	0.8910	-
Vo and Verma, 2016 [205] (II)	0.8700		0.8870	
HCF	0.7325	0.7645	0.7824	0.8283
CNN	0,7912	0.8471	0.8377	0.9102
HCF + CNN	0.8932	0.9109	0.9347	0.9721

Use cases of machine/deep learning in DR **Proliferative DR detection**



Proliferative DR

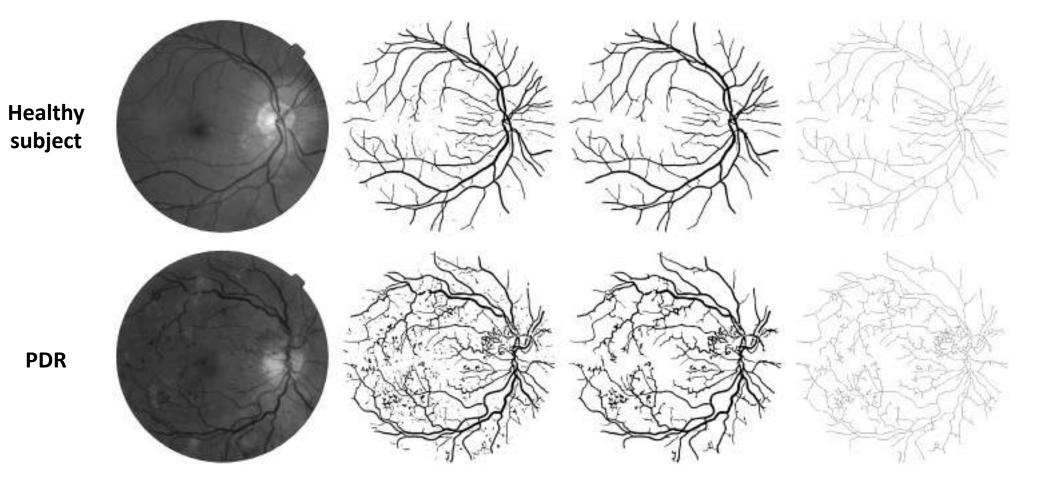
Peripheral neovascularization

Optic disc neovascularization

Fractals are geometrical objects with a basic / piecewise structure that is regular at different scales

Fractals are also present in human body structures!

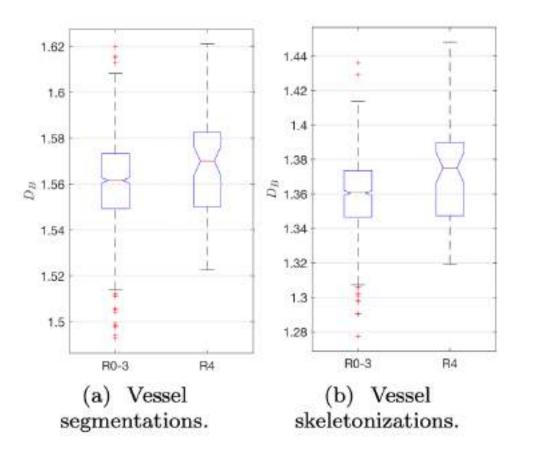
Use cases of machine/deep learning in DR Proliferative DR detection



Orlando J.I. et al. (2017). Med Phys

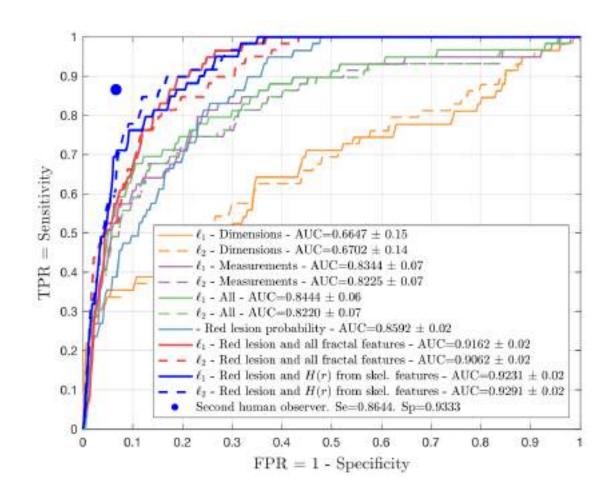
Use cases of machine/deep learning in DR Proliferative DR detection

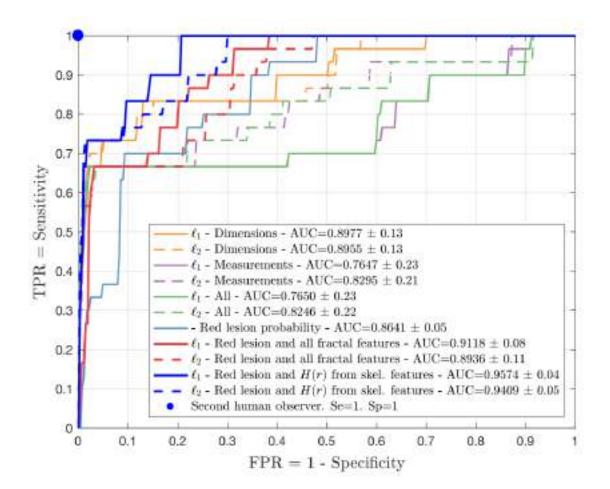
PDR cases exhibit larger fractal dimension



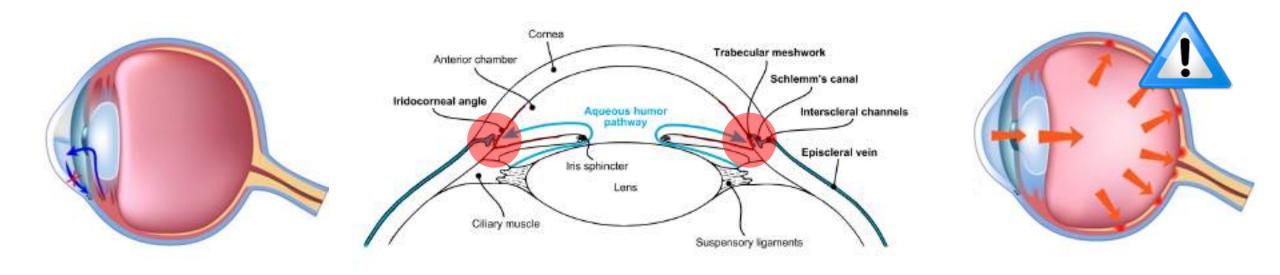
What about using these features for detecting PDR?

Use cases of machine/deep learning in DR Proliferative DR detection



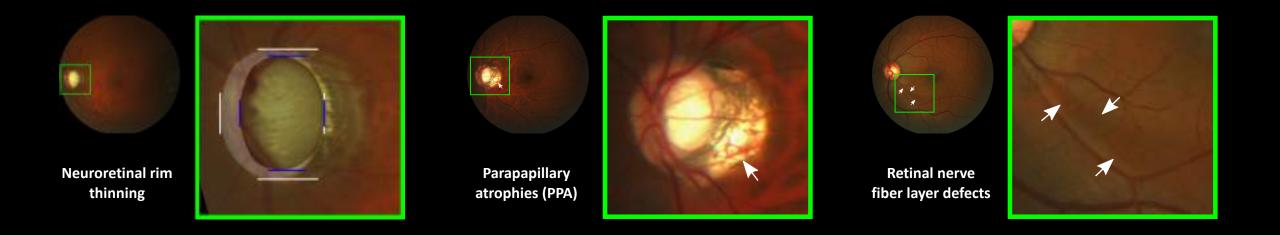


Known for centuries, still no cure, treatments to hamper its progression Silent thief of sight, asymptomatic, vision loss is irreversible



The only observable manifestations of the disease is the irreversible damage in the optic nerve head and the retinal nerve fiber layers

Known for centuries, still no cure, treatments to hamper its progression Silent thief of sight, asymptomatic, vision loss is irreversible



The only observable manifestations of the disease is the irreversible damage in the optic nerve head and the retinal nerve fiber layers

Glaucoma Use cases of machine/deep learning

Early screening

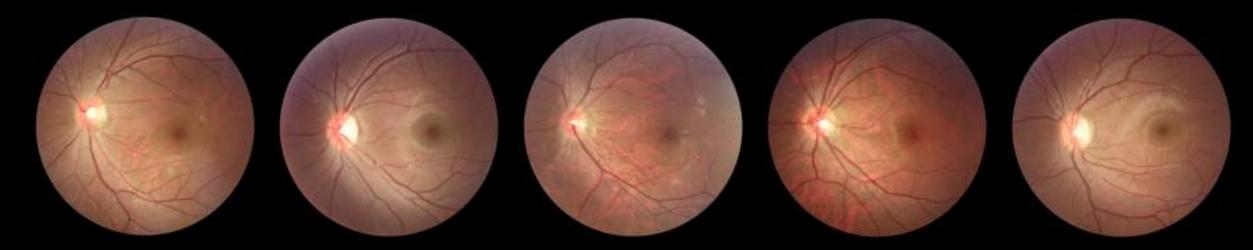
Qualitative feedback

Feature learning Identify biomarkers Image classification Healthy / Glaucomatous Segmentation Optic disc/cup, RNFL defects, PPA Image classification

Healthy / Glaucomatous

Use cases of machine/deep learning in glaucoma Glaucoma detection using transfer learning

Diagnosis glaucoma from fundus pictures is extremely difficult!

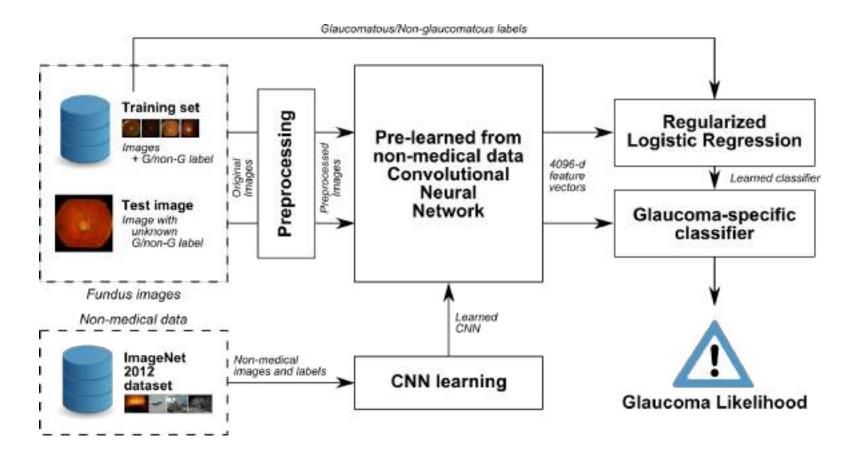


Public available data sets are small and have unreliable labels

Orlando J.I. et al. (2017). SIPAIM

OF CORRES 1 SA LAND TO MAKE P. PROM CONTRACTOR A De La Carter and

Use cases of machine/deep learning in glaucoma Glaucoma detection using transfer learning



Use cases of machine/deep learning in glaucoma Glaucoma detection using transfer learning

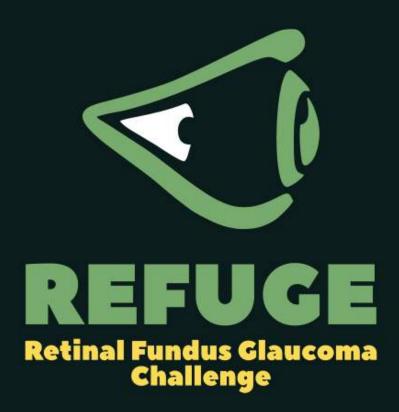


Orlando J.I. et al. (2017). SIPAIM

Use cases of machine/deep learning in glaucoma Glaucoma detection using transfer learning

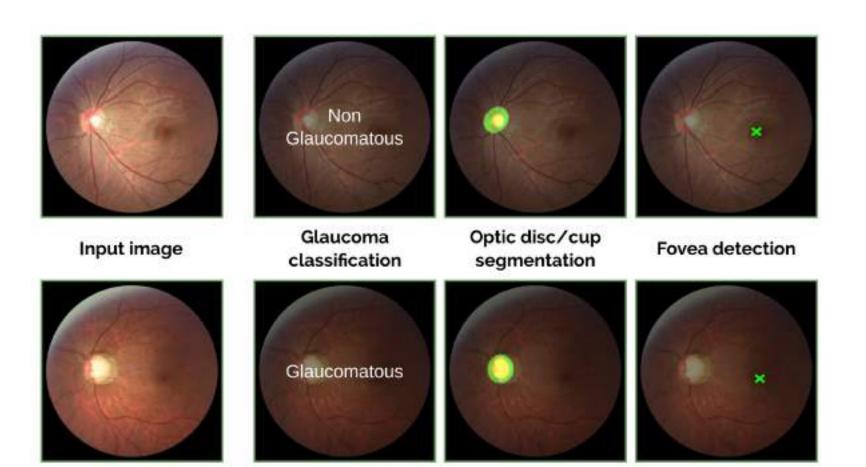
Best preprocessing methods	Overfeat	VGG-S
Cropped FOV, without CLAHE, without vessel inpainting, 90 ^o augmentation	0.7626	0.7212
PPA, without CLAHE, with vessels inpainted , without data augmentation	0.7180	0.6655

Chakrabarty A. and Sivaswamy J. (2016). *ISBI*. **AUC = 0.78**

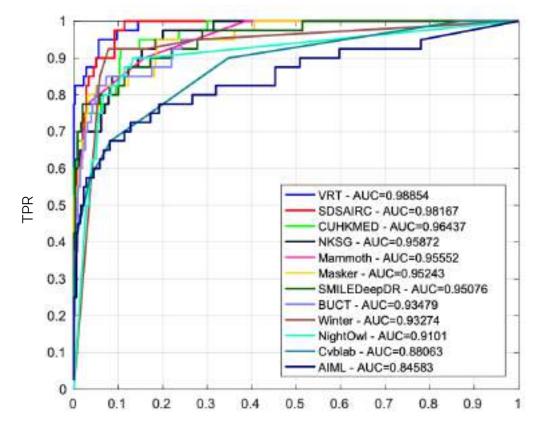


1200 fundus pictures with (reliable) glaucoma annotations Glaucomatous/Non-glaucomatous, optic disc/cup segmentations, fovea position

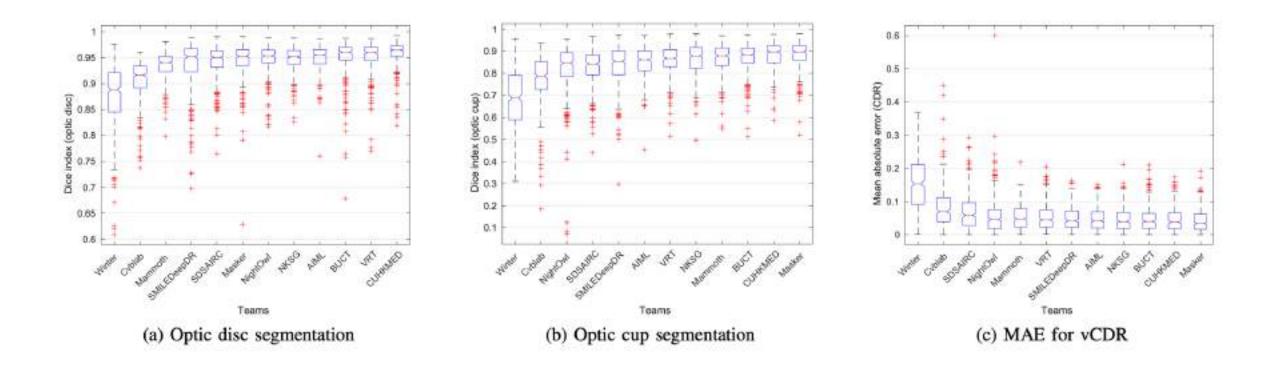
Use cases of machine/deep learning in glaucoma REFUGE challenge



Use cases of machine/deep learning in glaucoma REFUGE challenge



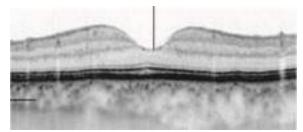
Use cases of machine/deep learning in glaucoma REFUGE challenge



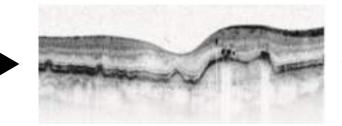
Age-related Macular Degeneration (AMD)

Most common cause of blindness in people over 65 years in developed countries Degeneration of photoreceptors, retinal pigment epithelium (RPE) and choriocapillaris

Fovea



Normal retina



Early/intermediate AMD

(Drusen accumulation, Degenerative changes in RPE, photoreceptors and choriocapillaris)

Exudative / neovascular AMD (Choroidal neovascularization, fluid accumulation)

Geographic atrophy (Dry AMD, RPE/photoreceptor death) Age-related macular degeneration (AMD) Use cases of machine/deep learning

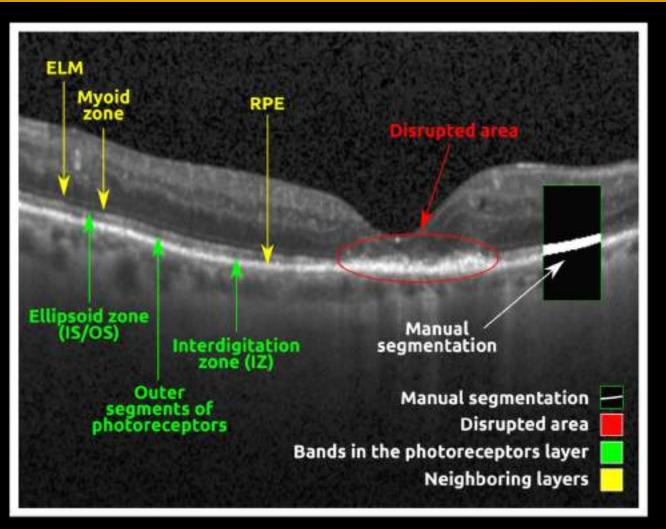
Early screening

Qualitative feedback

Segmentation Drusen, exudates, photoreceptors, GA Image classification

AMD grading

Challenging task with high interand intraobserver variability



How to solve region ambiguities and/or help readers?

Epistemic Uncertainty estimation

Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding

Alex Kendall, Vijay Badrinarayanan, Roberto Cipolla

(Submitted on 9 Nov 2015 (v1), last revised 10 Oct 2016 (this version, v2))

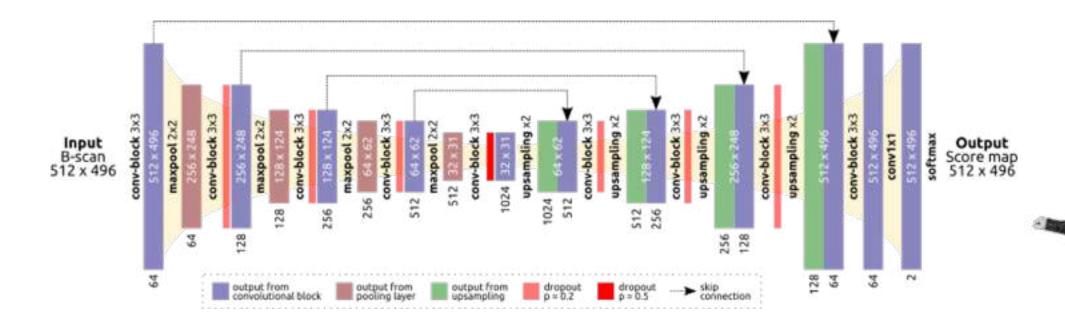
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

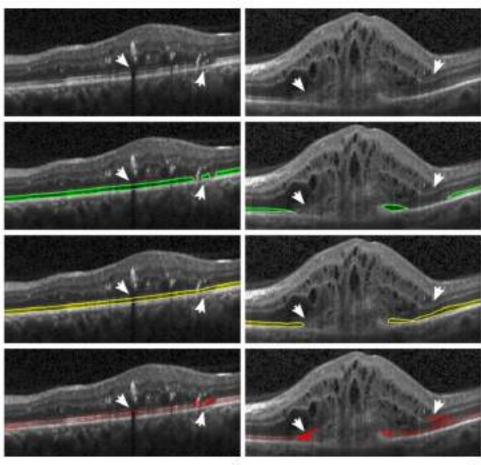
Alex Kendall, Yarin Gal

(Submitted on 15 Mar 2017 (v1), last revised 5 Oct 2017 (this version, v2))

Monte Carlo sampling with dropout on during test time allows to capture BETTER RESULTS + MODEL UNCERTAINTY

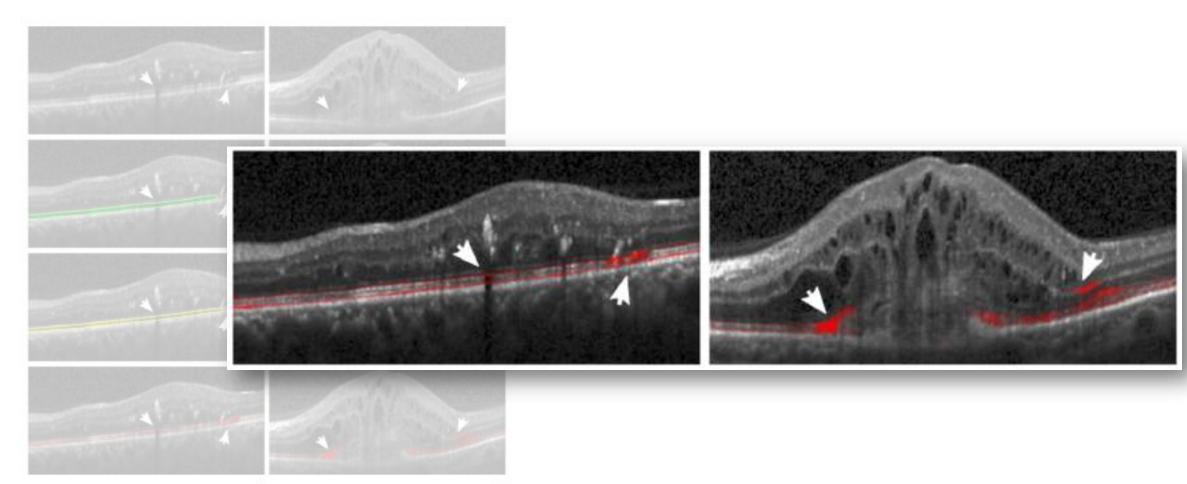
Uncertainty U-Net, Monte Carlo sampling with dropout on during test time Leaky ReLUs + Batch Norm + Dropout





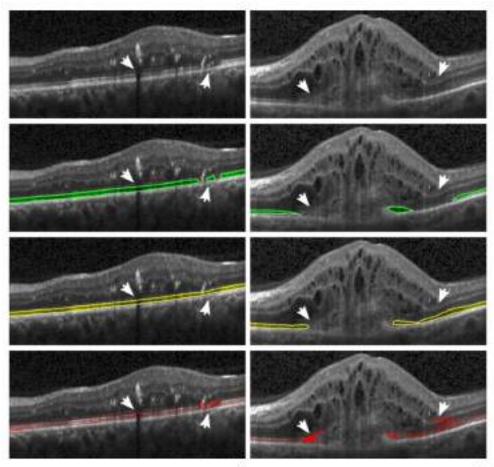
(a) Dice= 0.9196, $\overline{u} = 6.7 \times 10^{-4}$ (b) Dice= 0.5888, $\overline{u} = 13 \times 10^{-4}$

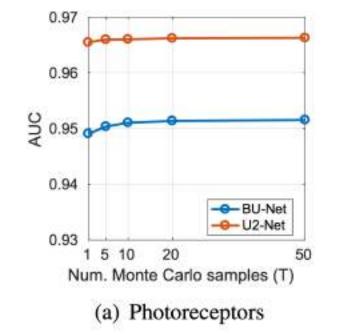
Orlando et al. 2019. Submitted to ISBI

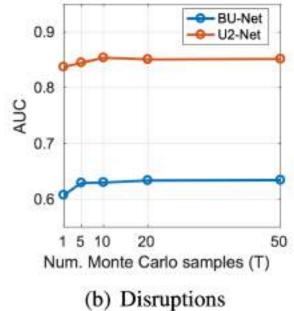


(a) Dice= 0.9196, $\overline{u} = 6.7 \times 10^{-4}$ (b) Dice= 0.5888, $\overline{u} = 13 \times 10^{-4}$

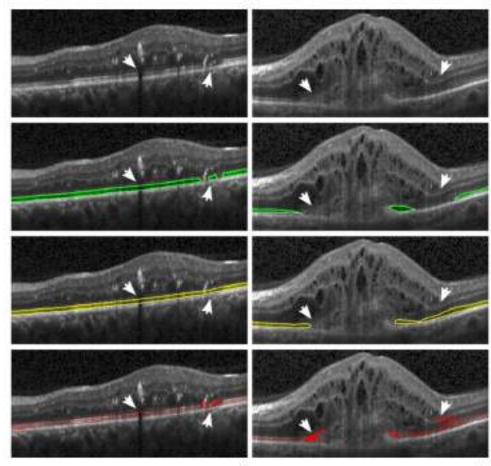
Orlando et al. 2019. Submitted to ISBI







(a) Dice= 0.9196, $\overline{u} = 6.7 \times 10^{-4}$ (b) Dice= 0.5888, $\overline{u} = 13 \times 10^{-4}$



Model	Test set A AMD (early, CNV), DME, RVO			Test set B Late AMD (GA)		
	Photoreceptors		Disrup- tions	Photoreceptors		Disrup- tions
	AUC	Dice	AUC	AUC	Dice	AUC
U-Net [10]	0.9566	0.8815 ± 0.06	0.5077	0.9390	0.8375 ±0.07	0.8795
BRU- Net [16]	0.9593	0.8767 ± 0.08	0.2621	0.9295	0.7890 ±0.13	0.8333
BU-Net $T = 1$	0.9466	0.8647 ±0.08	0.2222	0.8969	0.7311 ±0.14	0.8065
BU-Net $T = 10$	0.9505	0.8678 ± 0.08	0.2405	0.8998	0.7428 ±0.14	0.8129
U2-Net T = 1	0.9653	0.8932 ±0.04	0.6712	0.9500	0.8546 ±0.06	0.9085
U2-Net $T = 10$	0.9669	0.8943 ±0.04	0.6417	0.9472	0.8457 ± 0.08	0.9101

What are we going to talk about today?

The eye (and the retina)

Imaging modalities in ophthalmology Retinal diseases: AMD, DR, glaucoma Use cases of machine/deep learning

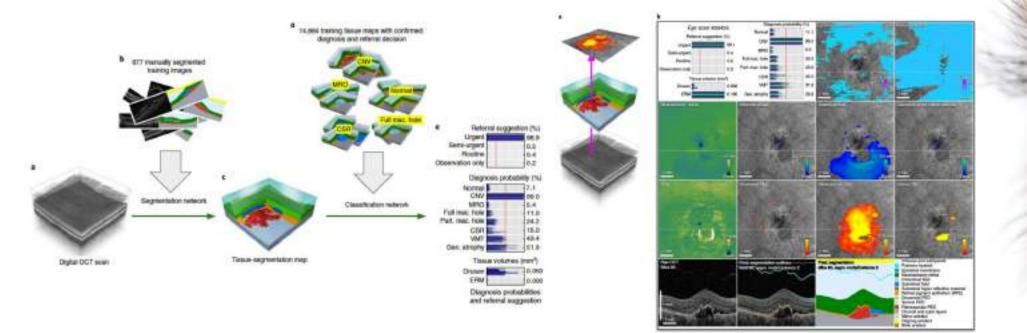
Concluding remarks

Telemedicine in ophthalmology

Screening / grading / qualitative feedback

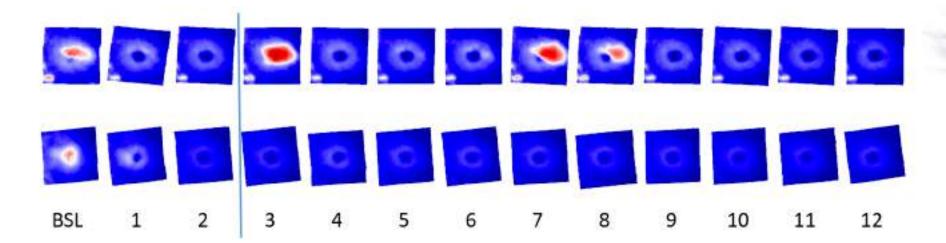
Telemedicine in ophthalmology

Screening / grading / qualitative feedback



Personalized medicine

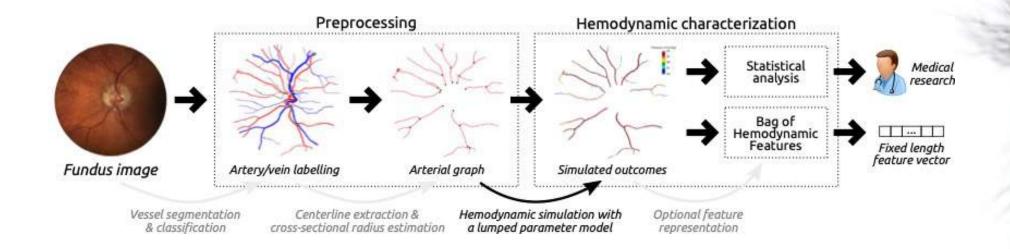
Longitudinal imaging / guidance of therapy



Better planning of anti VEGF therapy

Data-driven clinical research

Discovery of novel biomarkers for retinal diseases



Medical questions unsolved

Clinical tasks can be benefited by the incorporation of machine learning based tools

Data accumulation + curation + (computer assisted) annotation

Interaction between MD / researchers & computer scientists

Concluding remarks

Thanks for your attention!

Questions?

@ignaciorlando

Machine learning for ophthalmic image analysis

José Ignacio Orlando, PhD

Christian Doppler Laboratory for Ophthalmic Image Analysis (OPTIMA) Medical University of Vienna

FULLY FUNDED POSITION

MEDICAL UNIVERSITY

DIRECT ACCESS TO LARGE-SCALE CLINICAL DATA SETS

VIENNA WAS RECENTLY NAMED THE WORLD'S MOST LIVEABLE CITY (FOR THE 9TH YEAR RUNNING!)

> CV and cover letter with interest and research experience to hrvoje.bogunovic@meduniwien.ac.at

