The paper presents a novel method for learning normal asymmetry patterns in brain structures. It accurately characterizes normal asymmetries and detects pathological alterations without relying on diseased cases for training. The approach shows promise in improving the identification of neurodegenerative conditions..
NORHA is a novel index for quantifying hippocampal asymmetries in neurodegenerative conditions. It shows promise as a biomarker for detecting unilateral abnormalities, such as hippocampal sclerosis, and correlates positively with the functional cognitive test CDR-SB, indicating its potential in dementia diagnosis.
We designed a method to summarize hemodynamic parameters obtained by 0D simulations so that they can be applied for glaucoma detection. We observed certain correlation between glaucoma and these hemodynamic features.
We developed a simple linear regression model that is able to estimate the hyperparameters of a fully-connected CRF model for blood vessel segmentation in fundus images.
We use pretrained VGG-S and OverFeat architectures as feature extractors for glaucoma detection in fundus pictures. We were able to get almost 0.8 AUC without fine-tuning the networks!
We present an extensive description and evaluation of our method for blood vessel segmentation in fundus images based on a discriminatively trained fully connected conditional random field model.