Recent publications

Automated drusen segmentation in retinal optical coherence tomography (OCT) scans is relevant for understanding age-related macular degeneration (AMD) risk and progression. This task is usually performed by segmenting the top/bottom anatomical interfaces that define drusen, the outer boundary of the retinal pigment epithelium (OBRPE) and the Bruch’s membrane (BM), respectively. In this paper we propose a novel multi-decoder architecture that tackles drusen segmentation as a multitask problem. Instead of training a multiclass model for OBRPE/BM segmentation, we use one decoder per target class and an extra one aiming for the area between the layers. We also introduce connections between each class-specific branch and the additional decoder to increase the regularization effect of this surrogate task. We validated our approach on private/public data sets with 166 early/intermediate AMD Spectralis, and 200 AMD and control Bioptigen OCT volumes, respectively. Our method consistently outperformed several baselines in both layer and drusen segmentation evaluations..
In MICCAI 2019

Diagnosis and treatment guidance are aided by detecting relevant biomarkers in medical images. Although supervised deep learning can perform accurate segmentation of pathological areas, it is limited by requiring a-priori definitions of these regions, large-scale annotations, and a representative patient cohort in the training set. In contrast, anomaly detection is not limited to specific definitions of pathologies and allows for training on healthy samples without annotation. Anomalous regions can then serve as candidates for biomarker discovery. Knowledge about normal anatomical structure brings implicit information for detecting anomalies. We propose to take advantage of this property using bayesian deep learning, based on the assumption that epistemic uncertainties will correlate with anatomical deviations from a normal training set. A Bayesian UNet is trained on a well-defined healthy environment using weak labels of healthy anatomy produced by existing methods. At test time, we capture epistemic uncertainty estimates of our model using Monte Carlo dropout. A novel post-processing technique is then applied to exploit these estimates and transfer their layered appearance to smooth blob-shaped segmentations of the anomalies. We experimentally validated this approach in retinal optical coherence tomography (OCT) images, using weak labels of retinal layers. Our method achieved a Dice index of 0.789 in an independent anomaly test set of age-related macular degeneration (AMD) cases. The resulting segmentations allowed very high accuracy for separating healthy and diseased cases with late wet AMD, dry geographic atrophy (GA), diabetic macular edema (DME) and retinal vein occlusion (RVO). Finally, we qualitatively observed that our approach can also detect other deviations in normal scans such as cut edge artifacts.
In IEEE Transactions on Medical Imaging.

Purpose: In this paper we propose to apply generative adversarial neural networks trained with a cycle-consistency loss, or CycleGANs, to improve realism in ultrasound (US) simulation from Computed Tomography (CT) scans. Methods: A ray-casting US simulation approach is used to generate intermediate synthetic images from abdominal CT scans. Then, an unpaired set of these synthetic and real US images is used to train CycleGANs with two alternative architectures for the generator, a U-Net and a ResNet. These networks are finally used to translate ray-casting based simulations into more realistic synthetic US images. Results: Our approach was evaluated both qualitatively and quantitatively. A user study performed by two experts in US imaging shows that both networks significantly improve realism with respect to the original ray-casting algorithm (p << 0.001), with the ResNet model performing better than the U-Net. Conclusion: Applying CycleGANs allows to obtain better synthetic US images of the abdomen. These preliminary results pave the way towards efficient patient-specific US simulation for low-cost training of medical doctors and radiologists.
In CARS 2019

In this paper, we introduce a Bayesian deep learning based model for segmenting the photoreceptor layer in pathological OCT scans. Our architecture provides accurate segmentations of the photoreceptor layer and produces pixel-wise epistemic uncertainty maps that highlight potential areas of pathologies or segmentation errors. We empirically evaluated this approach in two sets of pathological OCT scans of patients with age-related macular degeneration, retinal vein oclussion and diabetic macular edema, improving the performance of the baseline U-Net both in terms of the Dice index and the area under the precision/recall curve. We also observed that the uncertainty estimates were inversely correlated with the model performance, underlying its utility for highlighting areas where manual inspection/correction might be needed.
In ISBI 2019

Glaucoma is the leading cause of irreversible but preventable blindness in the world. Its major treatable risk factor is the intra-ocular pressure, although other biomarkers are being explored to improve the understanding of the pathophysiology of the disease. It has been recently observed that glaucoma induces changes in the ocular hemodynamics. However, its effects on the functional behavior of the retinal arterioles have not been studied yet. In this paper we propose a first approach for characterizing those changes using computational hemodynamics predicted from patient specific retinal arborizations. The retinal blood flow is simulated using a 0D model for a steady, incompressible non Newtonian fluid in rigid domains. The simulation is performed on patient-specific arterial trees extracted from fundus images. We also propose a novel feature representation technique to comprise the outcomes of the simulation stage into a fixed length feature vector that can be used for classification studies. Our experiments on a new database of fundus images show that our approach is able to capture representative changes in the hemodynamics of glaucomatous patients. Code and data is available in this website.
In MICCAI 2018

Publications

Recent & Upcoming Talks

Recent Posts

More Posts

Our two papers on automated retinal OCT image analysis using deep learning have been accepted for presentation at ISBI 2019.

CONTINUE READING

I presented our work on machine learning for ophthalmic image analysis at University of Buenos Aires.

CONTINUE READING

REFUGE as part of OMIA, at MICCAI 2018

CONTINUE READING

Our paper with João Barbosa Breda, Karel van Keer, Matthew B. Blascko, Pablo J. Blanco and Carlos A. Bulant has been accepted for presentation in MICCAI 2018.

CONTINUE READING

My application to the NVIDIA Hardware Grant was successful!

CONTINUE READING

Teaching

I have been a Teaching Assistant in the following courses at UNICEN (Argentina):

Contact

Feel free to contact me if you have any questions about my research!