SketchZooms: Deep multi-view descriptors for matching line drawings

We develop a deep neural network that automatically extracts contextual features from patches in sketches, trained with 3D models rendered with non-photorealistic techniques. Our method is able to find dense correspondences between real world sketches!

Automated lumen segmentation using multi-frame convolutional neural networks in intravascular ultrasound datasets

We developed a deep learning based pipeline to segment the lumen boundary in IVUS datasets based on multiframes inputs.

Machine learning for filtering out false positive grey matter atrophies in single subject voxel based morphometry: A simulation based study

We used SVMs to filter out false positive detections causes by single subject VBM when applied for discovering abnormalities in MRI scans.

AGE Challenge: Angle Closure Glaucoma Evaluation in Anterior Segment Optical Coherence Tomography

This is the summary publication of the AGE challenge on angle closure glaucoma detection from OCT scans of the anterior segment.

Automated Quantification of Photoreceptor alteration in macular disease using Optical Coherence Tomography and Deep Learning

We introduced a fully automated approach to segment the photorceptor layer, evaluate its thickness and track potential disruptions using an ensemble of deep neural networks.

Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina

We applied CycleGANs to reduce the covariate shift of models trained on one OCT vendor and evaluated on a different one. And it works quite well!

On Orthogonal Projections for Dimension Reduction and Applications in Augmented Target Loss Functions for Learning Problems

Anna introduced a new mathematical approach for dimensionality reduction that we incorporated into loss functions to augment target information and improve performance.

REFUGE challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs

This is the summary publication of the REFUGE challenge on glaucoma detection in color fundus photographs.

Improving realism in patient-specific abdominal ultrasound simulation using CycleGANs

We applied CycleGANs to improve realism in ultrasound simulation based on ray-casting methods.

Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT

We used epistemic uncertainty estimates to discover potential abnormalities in diseased OCT scans. The uncertainty maps are obtained by a Bayesian U-Net trained on healthy OCT scans with weak labels of the retinal layers.