NORHA: A NORmal Hippocampal Asymmetry deviation index based on one-class novelty detection and 3D shape features

NORHA is a novel index for quantifying hippocampal asymmetries in neurodegenerative conditions. It shows promise as a biomarker for detecting unilateral abnormalities, such as hippocampal sclerosis, and correlates positively with the functional cognitive test CDR-SB, indicating its potential in dementia diagnosis.

Postoperative vault prediction for phakic implantable collamer lens surgery: the LASSO formulae

We developed a new set of ICL sizing formulae based on LASSO regression, OCT measurements and ocular biometry data.

Improving foveal avascular zone segmentation in fluorescein angiograms by leveraging manual vessel labels from public color fundus pictures

We developed a deep learning approach that leverages vessel segmentations from color fundus photographs to improve FAZ segmentation in FA images.

Linking Function and Structure with ReSenseNet: Predicting Retinal Sensitivity from Optical Coherence Tomography using Deep Learning

We present ReSenseNet, a 3D to 2D deep neural network that is able to predict microperimetry maps from OCT images.

SketchZooms: Deep multi-view descriptors for matching line drawings

We develop a deep neural network that automatically extracts contextual features from patches in sketches, trained with 3D models rendered with non-photorealistic techniques. Our method is able to find dense correspondences between real world sketches!

Automated lumen segmentation using multi-frame convolutional neural networks in intravascular ultrasound datasets

We developed a deep learning based pipeline to segment the lumen boundary in IVUS datasets based on multiframes inputs.

Machine learning for filtering out false positive grey matter atrophies in single subject voxel based morphometry: A simulation based study

We used SVMs to filter out false positive detections causes by single subject VBM when applied for discovering abnormalities in MRI scans.

AGE Challenge: Angle Closure Glaucoma Evaluation in Anterior Segment Optical Coherence Tomography

This is the summary publication of the AGE challenge on angle closure glaucoma detection from OCT scans of the anterior segment.

Automated Quantification of Photoreceptor alteration in macular disease using Optical Coherence Tomography and Deep Learning

We introduced a fully automated approach to segment the photorceptor layer, evaluate its thickness and track potential disruptions using an ensemble of deep neural networks.

Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina

We applied CycleGANs to reduce the covariate shift of models trained on one OCT vendor and evaluated on a different one. And it works quite well!